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Capacitance and Dielectrics

A capacitor is a device which stores

electric charge. Capacitors vary in shape

and size, but the basic configuration is two

conductors carrying equal but opposite

charges (as in figure).

Figure basic configuration of Capacitor



Capacitor have many important applications in electronics. Some examples include storing

electric potential energy, delaying voltage changes when coupled with resistor, filtering out

unwanted frequency signals, forming resonant circuits and making frequency dependent and

independent voltage dividers when combined with resistors.

In the uncharged state, the charge on either one of the conductors in the capacitor is zero.

During the charging process, a charge Q is moved from one conductor to the other one, giving

one conductor a charge Q+, and the other one a charge Q- and a potential difference ∆𝑉 is

created. Note that whether charged or uncharged, the net charge on the capacitor as a whole is

zero.



The simplest example of a capacitor consist of two conducting plates of area A, which are

parallel to each other, and separated by a distance d, as showing in figure.

Experiments show that the amount of charge Q stored in a

capacitor is linearly proportional to, the electric potential

difference between the plates:

𝑸 = 𝑪 ∆𝑽

Where C is the positive proportionality constant called

capacitance. Physically, capacitance is a measure of the

capacity of storing electric charge for a given potential

difference ∆𝑉.



The SI unit of capacitance is the farad (F). 1 F = 1 farad = 1 coulomb/volt = 1 C/V. A typical

capacitance is in the picofarad (1 𝑝𝐹 = 10−12 𝐹) to millifarad (1 𝑚𝐹 = 10−3 𝐹 =

1000 𝜇𝐹, 1 𝜇𝐹 = 10−6 𝐹) range.



Parallel Plate Capacitor

Consider two metallic plates of equal area A separated by a distance d. the top plate carries a

charge +Q while the bottom plate carries a charge –Q. the charge of the plates can be

accomplished by means of a battery which produces a potential difference. Find capacitance of

the system.

To find the capacitance C, The electric field between the plates using Gauss’s law:

 𝑬. 𝒅 𝑨 =
𝒒𝒆𝒏𝒄

𝜺𝒐

Calculation of Capacitance

Figure the electric filed between the plates of 

parallel plate capacitor



By choosing a Gaussian “pillbox” with cap area  𝐴 enclose the charge on the positive plate. The

electric field in the region between the plates is:

𝑬  𝑨 =
𝒒𝒆𝒏𝒄

𝜺𝒐
=

𝝈  𝑨

𝜺𝒐
⟹ 𝑬 =

𝝈

𝜺𝒐

Figure Gaussian surface for calculating 

the electric field between the plates

The potentials difference between plates is:

∆𝑽 = 𝑽− − 𝑽+ = −  
+

−

𝑬 . 𝒅𝒔 = −𝑬𝒅

Where we have taken the path of integration to be

straight line from the positive plate to the negative

plate following the field lines. Since the electric field

lines are always directed from higher potentials to

lower potential, -V<+V.



∆𝑽 = 𝑬𝒅 ⟹ ∆𝑽 =
𝝈𝒅

𝜺𝒐

From the definition of capacitance, we have:

𝑪 =
𝑸

∆𝑽
=

𝜺𝒐 𝑨

𝒅
(𝑷𝒂𝒓𝒂𝒍𝒍𝒆𝒍 𝑷𝒍𝒂𝒕𝒆)

The capacitance C increases linearly with the area A since for a given potential difference VΔ,

a bigger plate can hold more charge. On the other hand, C is inversely proportional to d, the

distance of separation because the smaller the value of d, the smaller the potential difference

|VΔ| for a fixed Q.



Cylindrical Capacitor

Consider a solid cylindrical conductor of radius a surrounded by a coaxial cylindrical shell of

inner radius b, as shown in Figure below. The length of both cylinders is L and we take this

length to be much larger than b − a, the separation of the cylinders, so that edge effects can be

neglected. The capacitor is charged so that the inner cylinder has charge +Q while the outer

shell has a charge –Q. What is the capacitance.

Figure (a) A cylindrical capacitor. (b) End 

view of the capacitor. The electric field is 

non-vanishing only in the region a < r < b.



To calculate the capacitance, we first compute the electric field everywhere. Due to the

cylindrical symmetry of the system, we choose our Gaussian surface to be a coaxial cylinder

with length (𝑙 < 𝐿) and radius r where a < r < b.

Using Gauss’s law, we have:

 

𝒔

𝑬 . 𝒅𝑨 =
𝑸

𝜺𝒐
⟹ 𝑬𝑨 = 𝑬 𝟐𝝅𝒓𝒍 =

𝝀𝒍

𝜺𝒐
⟹ 𝑬 =

𝝀

𝟐𝝅𝒓𝜺𝒐

where λ= Q/L is the charge per unit length. The electric field is non-vanishing only in the

region a < r < b. For a < r, the enclosed charge is q=0 since any net charge in a conductor must

reside on its surface.



Similarly, for r > 𝑙 , the enclosed charge is 𝑞𝑒𝑛𝑐 = 𝜆𝑙 − 𝜆𝑙 = 0 since the Gaussian surface

encloses equal but opposite charges from both conductors. The potential difference is given by:

∆𝑽 = 𝑽𝒃 − 𝑽𝒂 = −  
𝒂

𝒃

𝑬𝒓 𝒅𝒓 = −
𝝀

𝟐𝝅𝜺𝒐
 

𝒂

𝒃 𝒅𝒓

𝒓
= −

𝝀

𝟐𝝅𝜺𝒐
𝐥𝐧

𝒃

𝒂

where we have chosen the integration path to be along the direction of the electric field lines.

The outer conductor with negative charge has a lower potential.

𝑪 =
𝑸

𝚫𝑽
=

𝝀𝑳

𝝀 𝐥𝐧(𝒃/𝒂)/𝟐𝝅𝜺𝒐
=

𝟐𝝅𝜺𝒐𝑳

𝐥𝐧(𝒃/𝒂)

we see that the capacitance C depends only on the geometrical factors, L, a and b.



Spherical Capacitor

As a third example, let’s consider a spherical capacitor which consists of two concentric

spherical shells of radii a and b, as shown in Figure below. The inner shell has a charge +Q

uniformly distributed over its surface, and the outer shell an equal but opposite charge –Q.

What is the capacitance of this configuration?

Figure (a) spherical capacitor with two concentric spherical shells of 

radius a &b. (b) Gaussian surface for calculating the electric field.



The electric field is non vanishing only in the region a<r<b using Gauss law

 

𝒔

𝑬. 𝒅𝑨 = 𝑬𝒓𝑨 = 𝑬𝒓 𝟒𝝅𝒓𝟐 =
𝑸

𝝐𝒐
⟹ 𝑬𝒓 =

𝟏

𝟒𝝅𝝐𝒐

𝑸

𝒓𝟐

Therefore, the potential difference between the two conducting shells is:

∆𝑽 = 𝑽𝒃 − 𝑽𝒂 = −  
𝒂

𝒃

𝑬𝒓 𝒅𝒓 = −
𝑸

𝟒𝝅𝝐𝒐
 

𝒂

𝒃 𝒅𝒓

𝒓𝟐 = −
𝑸

𝟒𝝅𝝐𝒐

𝟏

𝒂
−

𝟏

𝒃
= −

𝑸

𝟒𝝅𝝐𝒐

𝒃 − 𝒂

𝒂𝒃

𝑪 =
𝑸

∆𝑽
= 𝟒𝝅𝝐𝒐

𝒂𝒃

𝒃 − 𝒂

Again the capacitor C depends only on the physical dimensions, a and b.

𝐥𝐢𝐦
𝒃⟶∞

𝑪 = 𝐥𝐢𝐦
𝒃⟶∞

𝟒𝝅𝝐𝒐

𝒂

𝟏 −
𝒂
𝒃

= 𝟒𝝅𝝐𝒐𝒂

Thus, for a single isolated spherical conductor of radius R,

the capacitance is:      𝑪 = 𝟒𝝅𝝐𝒐𝑹





Capacitor in Electric Circuits

A capacitor can be charged by connecting the plates to the terminals of a battery, which are

maintained at a potential difference ΔV called the terminal voltage.

Parallel Connection

Figure charging a capacitor

Figure Capacitors in parallel and an equivalent capacitor



The left plates of both capacitors C1 and C2 are connected to the positive terminal of the

battery and have the same electric potential as the positive terminal. Similarly, both right plates

are negatively charged and have the same potential as the negative terminal. Thus, the potential

difference |∆V| is the same across each capacitor. This gives: 𝑪𝟏 =
𝑸𝟏

∆𝑽
𝑪𝟐 =

𝑸𝟐

∆𝑽

These two capacitors can be replaced by a single equivalent capacitor Ceq with a total charge Q

supplied by the battery. However, since Q is shared by the two capacitors, we must have

𝑸 = 𝑸𝟏 + 𝑸𝟐 = 𝑪𝟏 ∆𝑽 + 𝑪𝟐 ∆𝑽 = (𝑪𝟏 + 𝑪𝟐) ∆𝑽

The equivalent capacitor is given by: 𝑪𝒆𝒒 =
𝑸

∆𝑽
= 𝑪𝟏 + 𝑪𝟐

Thus, capacitors that are connected in parallel add. The generalization to any number of 

capacitors is: 𝑪𝒆𝒒 = 𝑪𝟏 + 𝑪𝟐 + 𝑪𝟑 + ⋯ + 𝑪𝑵 =  𝒊=𝟏
𝑵 𝑪𝒊 (𝑷𝒂𝒓𝒂𝒍𝒍𝒆𝒍)



Series Connection

Suppose two initially uncharged capacitors 𝐶1 𝑎𝑛𝑑 𝐶2 are connected in series, as showing in

the figure below. A potential difference ∆𝑉 is then applied across both capacitors. The left

plate of 𝐶1 is connected to the positive terminal of the battery and becomes positively charged

with a charge +Q, while the right plate of 𝐶2 is connected to negative terminal and becomes

negatively charged with charge –Q as electrons flow in. What about inner plates? The inner

plates were initially uncharged. Now the outside plates each attract an equal and opposite

charge. So, the right plate of 𝐶1 will acquire a charge –Q and the left plate of 𝐶2+Q.



The potential difference across capacitors 𝐶1 𝑎𝑛𝑑 𝐶2 are: ∆𝑽𝟏 =
𝑸

𝑪𝟏
∆𝑽𝟐 =

𝑸

𝑪𝟐

The total potential difference is: ∆𝑽 = ∆𝑽𝟏 + ∆𝑽𝟐

The total potential difference across any number of capacitors in series connection is equal to

the sum of potential differences across the individual capacitors. These two capacitors can be

replaced by a single equivalent capacitor

𝑪𝒆𝒒 =
𝑸

∆𝑽

Using the fact that the potentials add in series:       
𝑸

𝑪𝒆𝒒
=

𝑸

𝑪𝟏
+

𝑸

𝑪𝟐

and so the equivalent capacitance for two capacitors in series becomes:
𝟏

𝑪𝒆𝒒
=

𝟏

𝑪𝟏
+

𝟏

𝑪𝟐

𝟏

𝑪𝒆𝒒
=

𝟏

𝑪𝟏
+

𝟏

𝑪𝟐
+ ⋯ +

𝟏

𝑪𝑵
=  

𝒊=𝟏

𝑵
𝟏

𝑪𝒊
(𝑺𝒆𝒓𝒊𝒆𝒔)



Example: Find the equivalent capacitance for the combination of capacitors shown in Figure 

below.

Sol.

Since C1 and C2 are connected in parallel,

their equivalent capacitance C12 given by: 

𝑪𝟏𝟐 = 𝑪𝟏 + 𝑪𝟐

Now the capacitance C12 is in series with C3. So the equivalent capacitance C123 is given by:                               

𝟏

𝑪𝟏𝟐𝟑
=

𝟏

𝑪𝟏𝟐
+

𝟏

𝑪𝟑






