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Alternating-Current Circuits el Ll i) g
12.1 AC Sources

we learned that changing magnetic flux can induce an emf according to Faraday’s
law of induction. In particular, if a coil rotates in the presence of a magnetic field,
the induced emf varies sinusoidally with time and leads to an alternating current
(AC), and provides a source of AC power. The symbol for an AC voltage source
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An example of an AC source 1s

V(t)=V,sm ot (12.1.1)



where the maximum value 7, 13 called the amplitude. The voltage varies between /;and
-V, since a sme function varies between +1 and -1. A graph of voltage as a function of
time 15 shown 1 Figure
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The sme function 1s periodic 1n time. This means that the value of the voltage at time 7
will be exactly the same af a later time /'=1+T where T 1s the period. The frequency,

£, defined as f =1/T . has the unit of inverse seconds (s™), or hertz (Hz). The angular
frequency 1s defined tobe @ =277

When a voltage source 1s connected to an RLC circuit, energy 1s provided to compensate
the energy dissipation 1n the resistor. and the oscillation will no longer damp out. The

oscillations of charge. current and potenfial difference are called driven or forced
oscillations.

After an mitial “transient time.” an AC current will flow m the circuit as a response fo the
driving voltage source. The current, written as



I(1) =1, st — ) (12.1.2)

will oscillate with the same frequency as the voltage source. with an amplitude 7, and
phase ¢ that depends on the driving frequency.

12.2.1 Purely Resistive load

Consider a purely resistive circuit with a resistor connected to an AC generator, as shown
m Figure 12.2.1. (As we shall see. a purely resistive circuit corresponds fo infinite

capacitance C' =o0and zero nductance L=0.)

@ R V(i)

V(1) =V, sinwt |




Applying Kirchhoff™s loop rule yields
V) -Va(@)=V()-I,(1)R=0 (12.2.1)

where V,(f)=I,(f)R 1s the instantancous voltage drop across the resistor. The
mstantaneous current in the resistor 1s given by

Va(t)  Vigsinot
R R

I(1) = = [, sin @f (12.2.2)

where V3, =7, and I, =V;,/R 15 the maximum current. Comparing Eq. (12.2.2) with

Eq. (12.1.2). we find¢ =0, which means that I,(f) and V(f) are m phase with each

other. meaning that they reach their maximum or mmimum values at the same time. The

time dependence of the current and the voltage across the resistor 1s depicted n Figure
12.2.2(a).
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(a) Time dependence of I,(7) and V,(f) across the resistor. (b) Phasor
diagram for the resistive circuut.

The behavior of I,(7)and V5, (7) can also be represented with a phasor diagram. as shown
m Figure 12.2.2(b). A phasor 1s a rotating vector having the following properties:

(1) length: the length corresponds to the amplitude.
(11) angular speed: the vector rotates counterclockwise with an angular speed .

(111) projection: the projection of the wvector along the wvertical axis comresponds to the
value of the alternating quanfity at tume 7.



We shall denote a phasor with an arrow above it. The phasor V., has a constant
magnitude of V. Its projection along the vertical direction 1s V,, sin@r ., which 1s equal

to V5 (r). the voltage drop across the resistor at time 7. A sumilar interpretation applies

to,, for the current passing through the resistor. From the phasor diagram. we readily
see that both the current and the voltage are in phase with each other.

The average value of current over one period can be obtained as:

1 (T 1 T . Ioo T . 27t |
{IR(I)}z—j Iﬂ(r}rﬂ‘:—l I, sin ot dfzﬁj. sin—— df =0 (12.2.3)
T~ I -0 I ~0 I
This average vanishes because
; — ! Tsinwr dr=o0 12.2.4
{5111 mr:} = ;Jﬂ sin ot dif = (12.2.4)

Sinmularly. one may find the following relations useful when averaging over one period:
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From the above, we see that the average of the square of the current 1s non-vanishing:

1 (T . 2at 1 3
<R(?)j T'[ I; gl0)dt =— I IRI:] sin” @t df = RGE ﬂ'-'.%lllzl1 - ] ﬂrI:EIﬁD (12.2.6)




It 15 convenient to define the root-mean-square (rms) current as

I =120 =IT (1227)

In a simular manner, the rms voltage can be defined as

2 z% (12.2.8)

The rms voltage supplied to the domestic wall outlets m the Umited States 1s
V_. =120 Vata frequency f = 60 Hz.

The power dissipated 1n the resistor 1s

P,()=I,(1)Vy(t)=I:(F)R (12.2.9)



from which the average over one period 1s obtained as:

S V.

(B0)=(120R)=



Purely Inductive Load

As we shall see below, a purely mductive circuit corresponds fo mfimte capacitance
C' =wand zero resistance R =0. Applymg the modified Kirchhoff’s rule for ductors,
the circuit equation reads

V(1) -V (1) =V()-L df =0 (12.2.11)
dt
which implies
A VO T o (122.12)
d L L

where V,, =V,. Integrating over the above equation, we find

|dI = E“ J sin @t df =- ‘ co%f}! ‘

0L

- ]5111[‘ or-Z ] (122.13)

L

V(.ir} =Vi} sInat

L % Vilt)
L




where we have used the trigonometric identity

~cosor =sin| o1 -2 (12.2.14)

-
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for rewriting the last expression. Comparing Eq. (12.2.14) with Eq. (12.1.2). we see that
the amplitude of the current through the inductor 1s

I0= V1o = Vo (12.2.15)
oL X,
where
X, =oL (12.2.16)

1s called the inductive reactance. It has SI units of ohms (€2). just like resistance.
However, unlike resistance. X, depends liearly on the angular frequency @. Thus, the

resistance to current flow mncreases with frequency. This 1s due to the fact that at hugher



frequencies the current changes more rapidly than 1t does at lower frequencies. On the
other hand. the inductive reactance vanishes as @ approaches zero.

By comparing Eq. (12.2.14) to Eq. (12.1.2). we also find the phase constant to be

¢=+g (12.2.17)

The current and voltage plots and the cormresponding phasor diagram are shown in the
Figure 12.2.4 below.
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Figure 12.2.4 (a) Time dependence of 7, (f) and V;(f) across the inductor. (b) Phasor
diagram for the mnductive circuit.

As can be seen from the figures. the current 7, (#) 1s out of phase with V;(7)by¢g =7/2:

it reaches 1ts maxiumum value after V; (7) does by one quarter of a cycle. Thus. we say that

The current lags voltage by r/ 2 in a purely inductive circuit




Purely Capacitive Load

In the purely capacitive case. both resistance R and inductance L are zero. The circuit

diagram 1s shown in Figure 12.2.5.

Again. Kirchhoffs voltage rule implies

Vit)y-Ve(t)y=V(r)— 0

which vields
O =CV(1)=CV.(t)=CV_ysm ot

where Voo =V,. On the other hand. the current 1s

I.(1)=+ f;—? =®CV,,coswt =mCV,, sin |

T
of+— |

2]
where we have used the trigonometric identity

| T
COs (M =s1n ﬁ)r+?
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(12.2.18)

(12.2.19)

(12.2.20)

(12.2.21)

1) =V, sin@t




The above equation mndicates that the maximum value of the current 1s

I,y = CV, =250 (12.2.22)
X,
where
1 .
X . =— 12.2.23
- o ( )

15 called the capacitance reactance. It also has SI units of ohms and represents the
effective resistance for a purely capacitive circuit. Note that X, 1s inversely proportional

to both C and @ . and diverges as @ approaches zero.
Bv comparing Eq. (12.2.21) to Eq. (12.1.2). the phase constant 1s given by

p=—2= (12.2.24)
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The current and voltage plots and the corresponding phasor diagram are shown i the
Figure 12.2.6 below.
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Figure 12.2.6 (a) Time dependence of 7.(7) and V_.(7) across the capacitor. (b) Phasor
diagram for the capacitive circuit.
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Notice that at 7 = 0. the voltage across the capacitor 1s zero while the cuurent i the circuit
1s at a maximmuum. In fact. /-(7) reaches its maxunum before V.(7) by one quarter of a

cvele (¢ = 7/ 2). Thus. we say that

The current leads the voltage by #/2 in a capacitive circuit




12.3

Consider now the driven series RLC circuit shovwn imn Figuare 12.3.1.

Applymng Kirchhott's loop rule, we obtarn

which leads to the following differential equation;

The KRILC Series Circuit
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V(t) =V, sinot
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Figure 12.3.1 Driven series RLC Circuit



dl
dt C

L—+IR+—= 4 =V, s1n of

(12.3.2)

Assuming that the capacitor 1s 1mifially uncharged so that 7=+dQ/dr 15 proportional to

the increase of charge 1 the capacitor, the above equation can be rewritten as

2
199, g%, 9

5

dr’ d C

=V, SIN OF

One possible solution to Eq. (12.3.3) 15

0()=0, cos(at - )

(12.3.3)

(12.3.4)



where the amplitude and the phase are, respectively.

V1 V.
Qn: —
JRoI P +(@-1ICF R +(@L-1/aC)

(12.3.5)
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_ 0

oNR +(X, - X,)
and
| X,-X

tang=—| WL -—— |=—L " C 12.3.6
= J {J£J R ( )



The corresponding current 1s

f(*"):+i—?:fﬂ sin(mr — @) (12.3.7)

with an amplitude

£ (12.3.8)
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I, =—0yw=—

Notice that the cuurent has the same amplitude and phase at all pomnts 1in the sernes RLC
circuit. On the other hand. the mstantaneous wvoltage across each of the three circuit
elements R. I and C has a different amplitude and phase relationship with the current. as

can be seen from the phasor diagrams shown i Figure 12.3.2.
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Figure 12.3.2 Phasor diagrams for the relationships between current and voltage in (a)
the resistor. (b) the inductor. and (¢) the capacitor. of a series RLC circuuit.



From Figure 12.3.2. the instantaneous voltages can be obtained as:

where

Vo(t)=I,Rsim ot =V, sinot

I;E(T)ZIGXLSHJ.L{'_JI‘F% I‘:P’iﬂcaszﬂr (12.3.9)

—

. T
Ve(n)y=1,X, Slll(mj" - ‘ =—V,, cos o

Veo =1 V=1, X,, V=1 X, (12.3.10)

are the amplitudes of the voltages across the circuit elements. The sum of all three
voltages 1s equal to the mstantaneous voltage supplied by the AC source:

V() =Vo()+V, (1) + V(1) (12.3.11)



Using the phasor representation. the above expression can also be written as

—

Vo =Vay +Vs +Vrg (12.3.12)

as shown 1n Figure 12.3.3 (a). Agamn we see that current phasor fﬂ leads the capacitive

voltage phasor ITTCD by 7/2 but lags the mductive voltage phasor Ifm by 7/2. The three
voltage phasors rotate counterclockwise as time passes, with their relative positions fixed.
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Figure 12.3.3 (a) Phasor diagram for the series RLC circuit. (b) voltage relationship

The relationship between different voltage amplitudes is depicted in Figure 12.3.3(b).
From the Figure. we see that

=

Vo =l I}:n = I}Rﬂ +I;T;:D +I}:‘:ﬂ |:\4‘|’VR21} +(Fro— Vo)
= JT R + (I, X, —I,X.)° (12.3.13)
— T R* + (X, — X )°

which leads to the same expression for Jp as that obtained in Eq. (12.3.7).

It 1s crucial to note that the maximum amplitude of the AC voltage source 7} i1s not equal
to the sum of the maximum voltage amplitudes across the three circuit elements:

V, = Vo + Fio + Feg (12.3.14)



This 15 due to the fact that the voltages are not 1 phase with one another, and they reach
thetr maxima at different times.















