The Induced Current in a Motor
Q1/ A motor contains a coil with a total resistance of 10 V and is supplied by a voltage of
120 V. When the motor is running at its maximum speed, the back emf is 70 V.

(A) Find the current in the coil at the instant the motor is turned on.
(B) Find the current in the coil when the motor has reached maximum speed.
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Self-Inductance and the Modified Kirchhoff's Loop Rule

The addition of time-changing magnetic fields to simple circuits means that the closed line
Integral of the electric field around a circuit is no longer zero. Instead, we have, for any
open surface

Any circuit where the current changes with time will have time-changing
magnetic fields, and therefore induced electric fields



we Introduce time-changing magnetic fields, the electric potential difference between two
points in our circuit is no longer well-defined, because when the line integral of the electric
field around a closed loop is nonzero, the potential difference between two points, say a and b,
IS no longer independent of the path taken to get from a to b. That is, the electric field is no
longer a conservative field, and the electric potential is no longer an appropriate concept, since
we can no longer write E

the negative gradient of a scalar potential. However, we can still write downinaE
straightforward fashion the equation that determines the behavior of a circuit



[.R Circuits

Any inductor will have some resistance. We represent this situation by drawing its
inductance [. and its resistance K separately, as in Fig. 6a. The resistance K could also
include any other resistance present in the circut. Now we ask, what happens when a
battery or other source of dc voltage ¥ 1s connected 1n senes to such an LR crcwt?
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At the instant the switch connecting the battery is closed, the current starts to flow.
It 15 opposed by the induced emf 1n the inductor which means point B in Fig. 6a 1s
positive relative to pomnt C. However, as soon as current starts to flow, there 1s also
a voltage drop of magnitude IR across the resistance. Hence the voltage apphed
across the inductance 1s reduced and the current increases less rapidly. The current
thus nses gradually as shown in Fg 6b, and approaches the steady wvalue
Iax = Vaof Ry, for which all the voltage drop is across the resistance.

We can show this analytically by applying Kirchhoff's loop rule to the circuit
of Fig. 6a. The emfs in the circmt are the battery voltage V,; and the emf
& = —L(dl/dt) in the inductor opposing the increasing current. Hence the sum of
the potential changes around the loop 1=

dl
V. — IR — L =
. di ’




where [ 15 the current in the circuit at any instant. We rearrange this to obtain

dl
I.—+ RI = V,.
dt .

Thas 1s a hinear differential equation and can be integrated in the same way for an
RC arcuit. We rewrnite Eq. 8 and then integrate:

J‘I dl - JE£
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where

L

1s the time constant of the LR circuit. The symbol 7 represents the time required

for the current / to reach (1 — 1/e) = 0.63 or 63% of its maximum value (V;/ R).
Equation 9 is plotted in Fig. 6b. (Compare to the RC circuit.)

| EXERCISE D Show that L/R does have dimensions of time.

Now let us flip the switch i Fig. 6a so that the battery 1s taken out of the ’:‘ AN ; fﬁ‘ﬁ‘x_?
circuit, and points A and C are connected together as shown i Fg. 7 at R L
the moment when the switching occurs (call it £ =0)and the current is [, Then ! T
the differential equation (Eq. 8) becomes (since V; = 0): “,_a“" *
dl ¢ I
L—+ Rl =1 '
df (



We rearrange this equation and integrate: In

f;df r R
— = — | —df 0.370p|———
o i o L |

where [ = [, at t =0, and [ = I at time [.
We integrate this last equation to obtain

I R
In— = ——{
I L
T
I = et

where again the time constant is 7 = L/R. The current thus decays exponentially 10 Zero



An LR crcuit. At £ =10, a 12.0-V battery is connected in series

with a 220-mH inductor and a total of 30-{} resistance, as shown in
Fig. 9. (a) What 15 the current at { =07 (b) What 15 the time constant?
() What 15 the maximum current? (d) How long will 1t take the current to reach
half its maximum possible value? (¢) At this instant, at what rate 15 energy bemng
delivered by the battery, and (f) at what rate 15 energy being stored in the
inductor’'s magnetic held?
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SOLUTION (a) The current cannot instantaneously jump from zero to some

other value when the switch 1s closed because the inductor opposes the change
(& = —L[d!;’ﬂ't}}. Hence just after the switch is closed, [ is still zero at { =0

and then begins to increase.
(b) The time constant is, from Eq. 10, 7 = L/R = (022 H)/(3011) = 7.3 ms.

(c) The current reaches its maximum steady value after a long time, when
difdt =0 s0 I, = V,/R=120V/30(} = 040 A.

(d)Weset T =21_. =V,/2R in Eq. 9, which gives us
1 — " = 2

ar

We solve for [

t = 7In2 = (7.3 ¥ 107%s)(0.69) = 5.0 ms.



(e) At this instant, / = [__. /2 = 200 mA. so the power being delivered by the
battery is

P =1V = (020 A)(12V) = 24W.
{ f) From Eq. 6. the energy stored in an inductor L. at any instant 1s

U = sLI°
where [ 1s the current in the inductor at that instant. The rafe at which the energy
changes 1s

d L’ dl

— = LI —-

dl dl

We can differentiate Eq. 9 to obtain d/df, or use the differential equation, Eq. 8,
directly:
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(0.20 A)[12V — (300){(020 A)] = 12W.



EXERCISE E A resistor in series with an inductor has a time constant of 10 ms. When the
same resistor is placed in series with a 3-uF capacitor, the time constant is 5 % 107%s,
What 15 the value of the inductor? {a) 5uH; (b) 10xH; {¢) 5mH; {d) 10mH; (&) not
enough information to determine 1t.



L C Circuits and Electromagnetic

Oscillations
In any electnc circuit, there can be three basic components: resistance, capacitance,
and inductance, in addition to a source of emf (There can also be more complex

components, such as diodes or transistors.) Capacitance C

tance ¢ and an inductance, L., Fig. 10. This 15 an idealized circuit in which we
assume there 1s no resistance; in the next Section we will include resistance. Let us
suppose the capacitor in Fig. 10 15 imitially charged so that one plate has
charge (), and the other plate has charge —({},. and the potential difference across
itis ¥V = (/C. Suppose that at [ = (), the switch is closed. The capacitor immedi-
ately begins to discharge. As 1t does so0, the current [ through
the inductor increases. We now apply Kirchhoff's loop rule (sum of potential
changes around a loop 1s zero):

dl QO
—L— + = = |,
dt = C



Because charge leaves the positive plate on the capacitor to produce the
current I as shown mm Fig. 10, the charge ) on the (positive) plate of

the capacitor is decreasing, so [ = —d(/df. We can then rewrite the above
equation as
Qg 0

=+ 7= = 0. (12)

This 15 a familiar differential equation. It has the same form as the equation for
simple harmonic motion. The solution of Eq. 12 can be written as

0 = Qycos(wl + &) (13)



where (J, and ¢ are constanis that depend on the imitial conditions. We insert

Eq. 13 into Eq. 12, noting that d°Q/dt* = —w (), cos{wf + &); thus

—w g cos(al + &) + éﬂum{mf + ¢) =0

ar

(—ml + %]-:m[m!' + é) = 0.

This relation can be true for all imes § only if [—mz + l,r'Ll'_'.']I = (), which tells us that

w = 2uf =, : (14)



Equation 13 shows that the charge on the capacitor in an LC circuit oscillates
sinusoidally. The current 1n the inductor 1s

d
I = ——=
dt

w,sin(wl + &)
= Iysin(wl + &): (15)

50 the current too is sinusoidal. The maximum value of I'is [, = Q, = O,/ VILC.
Equations 13 and 15 for {! and f when ¢ = 0 are plotted in Fig. 11.
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Now let us look at LC oscllations from the point of view of energy. The
energy stored in the electric field of the capacitor at any time [ is:

1 _ &,
= e—— = — = —|— .
L S C 5C oS (wf + &)
The energy stored in the magnetic iield of the inductor at the same instant is (Eq. 6)
1 . Le'Qp :
Ug = ELI' = Dsm'{mr + ) = %sm‘j‘[aﬂ‘ + o)

where we used Eq. 14. If we let & = 0, then at times { =0, [ = %T, f =T. and
s0 on (where T is the period = 1/f = 27/w ), we have U, = Q3/2C and
Uy = 0. That 15, all the energy is stored in the electnc hield of the capacitor. But at
[ = %T,%T, and so on, I/, = 0 and Uy = Q3/2C, and so0 all the energy is stored
in the magnetic field of the inductor. At any time ¢, the total energy is

= = |cos™{wt + &) + sin’(of + $)| = % (16)



SC1IL Iy 1.C circuit. A 1200-pF capacitor is fully charged by a 500-V dc
power supply. It 15 disconnected from the power supply and 15 connected, at

[ =0, to a 75-mH inductor. Determine: (a) the imtal charge on the capacitor;
(#) the maximum current; (c) the frequency f and penod T of oscallation; and
(d) the total energy oscillating 1n the system.

SOLUTION (a) The 500-% power supply, before being disconnected, charged the
capacitor to a charge of

O, = CV = (12 x 10°°F)(500 V) = 6.0 x 1077 C.

(&) The maximum current, f_...15 (see Eq=s 14 and 15)

6.0 = 1007 C
[ — w0, — 20 _ [ ) — 63mA.
N LAC (0075 HY)(1.2 = 107° F)
{c) Equation 14 gives us the frequency:
e 1
f = = = —F0 = 17 kH=.
Zar (27 W LC)

and the period T 1=

1

Tr = = 6.0 = 10 7s.

f
{(d ) Finally the total energy (Eq. 16) is
6.0 = 1077 C)
U=Q§= [ ] = 1.5 = 10 * 1.

2C 2(1.2 = 107 °F)



[.C Oscillations with Resistance
(LRC Circuit)

The LC arcut discussed in the previous Section 15 an idealization. There 1s always
some resistance R in any circuit, and so we now discuss such a simple LRC circuit,
Fig. 13.

Suppose again that the capacitor 1s intially given a charge (), and the battery
or other source 15 then removed from the circmt. The switch 15 closed at 1 = 0.
Since there 15 now a resistance in the circuit, we expect some of the energy to be
converted to thermal energy, and so we don't expect undamped oscillations
as in a pure LC circut. Indeed, if we use Kirchhoff's loop rule around this circuit,

we oblain
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dt c

L
 T——

g R f/s.'wit.:n

I
|
C

FIGURE 13 An LRC circuit.



which is the same equation we had in Section 5 with the addition of the voltage

drop IR across the resistor. Since [ = —d(Q/dt, as we saw in Section 5, this equation
becomes

This second-order differential equation 1n the vanable () has precisely the same
form as that for the damped harmonic oscillator:

dx dx
— + b— + kx = 0.
o at



Hence we can analyeze our LRC circuit in the same way as for damped harmonic
motion. Our system may undergo damped oscillations, curve A 1nm Fig. 14 {under-
damped system )., or it may be cntically damped {(curve B), or overdamped (curve
). depending on the relative values of K, I., and C. With m replaced by L.. b by R,
and & by € ', we find that the svstem will be underdamped when

A4Fr,
R = .
'

and overdamped for R = 4L/C. Critical damping (curve B in Fig 14)
occurs when R? = 4/0./C. If R is smaller than ~ 4FL/7C . the angular frequency, a’,
will be

. - | R
@ = T T 1= (18)

And the charge ) as a function of time will be

2 = ge IL cos(w't + &) (19)

where o 1s a phase constant.



