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8.5 Charged Particles in a Uniform Magnetic Field

If a particle of mass 7 moves 1n a circle of radius 7 at a constant speed v, what acts on the

" ' ' - . i
particle 1s a radial force of magmtude F =m-

/r that always pomts toward the center

and 1s perpendicular to the velocity of the particle.

—

In Section 8.2. we have also shown that the magnetic force F, always points in the

direction perpendicular to the velocity v of the ¢
Since fﬂ can do not work. 1t can only change tl

harged particle and the magnetic fieldB .
1e direction of v but not 1ts magnitude.

What would happen if a charged particle moves through a uniform magnetic field B with

its initial velocity V at a right angle toB ? For simplicity. let the charge be +¢ and the

direction of B be into the page. It turns out that 1?ﬂ will play the role of a centripetal

force and the charged particle will move 1n a circular path 1 a counterclockwise direction,

as shown mn Figure 8.5.1.



Figure 8.5.1 Path of a charge particle moving in a uniform B field with velocity ¥

With mitially perpendicular to B
gvB =" (8.5.1)
7
the radius of the circle 1s found to be
mv
= 8.5.2
0B ( )
The period T (time required for one complete revolution) is given by
. 4 ' 2..-'
T — 27y _ 2 m _ 2mam (8.5.3)
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Simularly. the angular speed (cvclotron frequency) @ of the particle can be obtained as

.:f-,w:z.:z'f:lzﬁ (8.5.4)
room




If the initial velocity of the charged particle has a component parallel to the magnetic

fieldB . instead of a circle, the resulting trajectory will be a helical path. as shown in
Figure 8.5.2:
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Figure 8.5.2 Helical path of a charged particle in an external magnetic field. The velocity
of the particle has a non-zero component along the direction of B .



8.6 Applications

There are many applications mmvolving charged particles moving through a uniform
magnetic field.

8.6.1 Velocity Selector

In the presence of both electric field E and magnetic field B . the total force on a charged
particle 1s

F=g(E+VxB) (8.6.1)

This 1s known as the Lorentz force. By combining the two fields. particles which move
with a certain velocity can be selected. This was the principle used by J. J. Thomson to
measure the charge-to-mass ratio of the electrons. In Figure 8.6.1 the schematic diagram

of Thomson’s apparatus 1s depicted.

Figure 8.6.1 Thomson's apparatus



The electrons with charge ¢ =—e and mass m are emutted from the cathode C and then
accelerated toward slit A. Let the potential difference between A and C beV, V. =AV .

The change m potential energy 1s equal to the external work done i accelerating the
electrons: AU =W_, =¢AV =—-eAV . By energy conservation. the kinetic energy gained

18AK =AU =m* /2. Thus, the speed of the electrons is given by

'J i



It the electrons further pass through a region where there exists a downward uniform
electric field. the electrons. being negatively charged, will be deflected upward. However.

1f m addition to the electric field, a magnetic field directed imnto the page 15 also applied.

then the electrons will experience an additional downward magnetic force —evxB. When
the two forces exactly cancel. the electrons will move i a straight path. From Eq. 8.6.1.
we see that when the condition for the cancellation of the two forces 1s given byeE =evB.

which mmplies

V=— (8.6.3)



In other words. only those particles with speed v = E/ B will be able to move in a straight
line. Combining the two equations. we obtain

e E’
m 2(AV)B’

(8.6.4)

By measuring £. AV and B . the charge-to-mass ratio can be readily determuned. The
most precise measurement to date is e/m =1.758820174(71)x 10" C/kg.



8.6.2 Mass Spectrometer

Various methods can be used to measure the mass of an atom. One possibility 1s through
the use of a mass spectrometer. The basic feature of a Bainbridge mass spectrometer 1s
illustrated 1in Figure 8.6.2. A particle carrying a charge +¢ 1s first sent through a velocity
selector.

Figure 8.6.2 A Bainbridge mass spectrometer



The applied electric and magnetic fields satisfy the relation E =vB so that the trajectory
of the particle 15 a straight line. Upon entering a region where a second magnetic field

—

B, pointing into the page has been applied. the particle will move 1 a circular path with
radius 7 and eventually strike the photographic plate. Using Eq. 8.5.2, we have

mv

=— (8.6.5)
q B,

Since v = E/ B. the mass of the particle can be written as

qByr  qByBr

- : (8.6.6)

m =



8.7 Summary

e The magnetic force acting on a charge ¢ traveling at a velocity ¥V in a magnetic
field B is given by

FE =gv=<B

e The magnetic force acting on a wire of length £ camrving a steady cwrent 7 in a
magnetic field B is

TTB —7£=<B

e The magnetic force dFy; generated by a small portion of cuurent J of length 4s in

a magnetic field B is
{?TFB =7 ds <B

e The torque T acting on a close loop of wire of area .4 carryving a current 7 in a
uniform magnetic field B is

T=JA=<B



where A is a vector which has a magnitude of 4 and a direction perpendicular to
the loop.

¢ The magnetic dipole moment of a closed loop of wue of area 4 carrving a
current / 1s given by

n=7A

¢ The torque exerted on a magnetic dipole p placed in an external magnetic field

B 1s
T=uxB

e The potential energy of a magnetic dipole placed in a magnetic field is



If a particle of charge ¢ and mass m enters a magnetic field of magnitude B with a
velocity v perpendicular to the magnetic field lines, the radius of the circular path
that the particle follows 1s given by

'
lq|B

F=

and the angular speed of the particle 1s




3.8 Problem-Solving Tips

In this Chapter. we have shown that in the presence of both magnetic field B and the
electric field E . the total force acting on a moving particle with charge g
is F =F. —I—I_f'3 — g(E+ v =B). where ¥ is the welocity of the particle. The direction of
1_-_"5. involves the cross product of ¥ and B . based on the right-hand rule. In Cartesian

coordinates. the unit vectors arei . J and k which satisfy the following properties:

i<j=k. j<k=i kxi=]
jxi=—k. Kxj=—i. ix<k=—j
ixi:jszﬁxﬁzﬂ

For v =1, i+ v, j+ 1':1:1 and B = B_ i+ B, i+ B_ k . the cross product may be obtained as

=

_1'-.1“'5: ).“i + {1:1'33'

— (1‘:}_3__ —1‘:33,-2'5 + (v B

x

—v, BK
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If only the magnetic field is present, and v is perpendicular toB . then the trajectory is a
circle with a radius »=mv/|¢| B . and an angular speed o= ¢ |B/m.

When dealing with a more complicated case, 1t 15 useful to work with mdividual force
components. For example.

F,=ma,=qE +q(v,B,-v,B )



8.9.1 Rolling Rod

A rod with a mass m and a radius R 1s mounted on two parallel rails of length @ separated
by a distance (. as shown in the Figure 8.9.1. The rod carries a cuurent 7 and rolls without

slipping along the rails which are placed in a uniform magnetic field B directed into the
page. If the rod 1s initially at rest. what is its speed as it leaves the rails?
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Figure 8.9.1 Rolling rod in uniform magnetic field



Solution:

Using the coordinate syvstem shown on the right. the X

magnetic force acting on the rod 1s given by |"

Fp=Jlf<B=JI({i)=<(—BKk)=1TI(Bj (8.9.1) /
P

The total work done by the magnetic force on the rod as i1t moves through the region is

W = |¥y-ds = Fpa=(I(B)a (8.9.2)
Bv the work-energy theorem. 7 mmist be equal to the change 1in kinetic energy:

1 5 1 5
AR = — v+ ?Iﬂl* (8.9.3)

— i

where both translation and rolling are inmvolved. Since the moment of inertia of the rod 1s
given by 7 =mR> /2. and the condition of rolling with slipping implies =1/ R . we
have

e s TR
1{ mR~

- 3
feBa = lun“ +—[
2 21 2

> ] :lnﬁ.‘2 _|_l””~3 = —mn’ (8.9.4)
iy 2 4 4
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Thus. the speed of the rod as it leaves the rails 1s

AJE
\.I| 3m



8.9.2 Suspended Conducting Rod

A conducting rod having a mass density A kKkg/m 1s suspended by two flexible wires 1n a
uniform magnetic field B which points out of the page. as shown in Figure 8.9.2.

Figure 8.9.2 Suspended conducting rod in uvniformm magnetic field

If the tension on the wires 1s zero. what are the magmtude and the direction of the current
in the rod?



Solution:

In order that the tension in the wires be zero. the magnetic
— —_ — . K
force F, =7£=<B acting on the conductor must exactly ] )
- . — - .-'J= ]
cancel the downward gravitational forceF, = —mgk . ,//
b f’r}-

For 1_7B to point in the +--direction. we must have £ = —¢ J . 1.e.. the cuurent flows to the
left. so that

F,=1£=xB=1I1(—(j)x(Bi)=—I(B(j=<i)=+I(Bk (8.9.6)
The magnitude of the current can be obtain from

ItB =mg (8.9.7)
or
=g _ 4% (8.9.8)



8.9.3 Charged Particles in Magnetic Field

Particle 4 with charge ¢ and mass m, and particle B with charge 2¢ and mass my . are

accelerated from rest by a potential difference AV . and subsequently deflected by a
uniform magnetic field mto semicircular paths. The radu of the trajectories by particle 4
and B are R and 2R. respectively. The direction of the magnetic field 1s perpendicular to
the velocity of the particle. What 1s their mass ratio?

Solution:

The kinetic energyv gained by the charges 1s equal to

%F}.ﬁ‘z = g AT (8.9.9)

2gAT
v |2aAar (8.9.10)
Frl

The charges move in semicircles. since the magnetic force points radially imward and
provides the source of the centripetal force:

which vields

" _ B (8.9.11)

7



The radius of the circle can be readily obtained as:

_my ’ZqﬂV 2mAV (8.9.12)
qB

which shows that 7 is proportional to (m/¢)"'*. The mass ratio can then be obtained from

}:-! — {:F”.-I '{.;'f,-l)l;2 — R — {:F”;l GJIE {3 9 ].j')
re (mylqy)” 2R (my/29)""

which g1ves

my 1 (8.9.14)
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