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Introduction to Magnetic Fields

Int

roduction

We have seen that a charged object produces an electric field E at all points in space. In a

similar manner, a bar magnet 15 a source of a magnetic field B. This can be readily
demonstrated by moving a compass near the magnet. The compass needle will lme up
along the direction of the magnefic field produced by the magnet, as depicted m Figure
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Unlike electric charges which can be 1solated, the two magnefic poles always come m a
pair. When you break the bar magnet, two new bar magnets are obtamned, each with a
north pole and a south pole (Figure 8.1.3). In other words, magnetic “monopoles” do not
exist m 1solation, although they are of theoretical mferest.
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Figure 8.1.3 Magnetic monopoles do not exist 1 1solation




How do we define the magnetic field B ? In the case of an electric field E, we have
already seen that the field 1s defined as the force per unit charge:
- F
E=-% (8.1.1)
q

However, due to the absence of magnetic monopoles, B must be defined in a different
way.



8.2 The Definition of a Magnetic Field

To define the magnetic field at a point, consider a particle of charge ¢ and moving at a
velocity V. Experimentally we have the followimg observations:

(1) The magnitude of the magnetic force FB exerted on the charged particle 1s proportional \
to both v and ¢.

(2) The magnitude and direction of FB depends on v and B.
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(3) The magnetic force F; vanishes when v 1s parallel to B . However, when v makes an

- o L . _ . Figure8.2.1 The direction of the magnetic force
angle 6 with B, the direction of F; 1s perpendicular to the plane formed by v and B,

and the magnitude of FB 1 proportional to s @.

(4) When the sign of the charge of the particle 1s switched from positive to negative (or
vice versa), the direction of the magnetic force also reverses.



The above observations can be summarized with the following equation:

—_

F, =¢vxB (8.2.1)

The above expression can be taken as the working definition of the magnetic field at a
pomnt m space. The magnitude of F; 1s given by

F;=|q|vBsmé (8.2.2)
The SI unit of magnetic field 1s the tesla (T):
| tesla=1T =1 Newton 1 N 1 N
(Coulomb)(meter/second) C-m/s A-m

Another commonly used non-SI unit for B is the gauss (G). where 1T=10*G .



Note that F, 1s always perpendicular tov and B, and cannot change the particle’s speed
v (and thus the kinetic energy). In other words, magnetic force cannot speed up or slow
down a charged particle. Consequently, F; can do no work on the particle:

dW = FB ds= q(?’xf}) - vdt = q(Vx v)-Bdr=0 (8.2.3)

The direction of v. however. can be altered by the magnetic force, as we shall see below.



8.3 Magnetic Force on a Current-Carrying Wire

We have just seen that a charged particle moving through a magnetic field experiences a
magnetic force F,. Since electric current consists of a collection of charged particles m

motion, when placed 1 a magnetic field, a current-carrymg wire will also experience a
magnetic force.

Consider a long straight wire suspended 1 the region between the two magnetic poles.
The magnetic field points out the page and 1s represented with dots (¢). It can be readily
demonstrated that when a downward current passes through, the wire 1s deflected to the

left. However, when the current 1s upward, the deflection 1s rightward, as shown i Figure
3.3.1.
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Figure 8.3.1 Deflection of current-carrying wire by magnetic force



To calculate the force exerted on the wire, consider a segment of wire of length ( and

cross-sectional area 4, as shown in Figure 8.3.2. The magnetic field points ito the page,
and 1s represented with crosses ( X ).

Figure 8.3.2 Magnetic force on a conducting wire



The charges move at an average dritt velocity v, . Since the total amount of charge 1n this

segment 15 Q. =q(nAl), where n 1s the number of charges per unit volume, the total
magnetic force on the segment 1

—

F,=0 ¥, xB=qndl(V,xB)=I({xB) (8.3.1)

where [ =nqv. 4, and [ 1s a length vector with a magnitude [ and directed along the
direction of the electric current.



For a wire of arbitrary shape, the magnetic force can be obtamed by summing over the
forces acting on the small segments that make up the wire. Let the differential segment be
denoted as d s (Figure 8.3.3).
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Figure 8.3.3 Current-carrying wire placed in a magnetic field



The magnetic force acting on the segment 1s
d¥F, =Ids <B (8.3.2)

Thus. the total force 1s

'y
'

— B _ —
F, =7 d5xB (8.3.

where @ and b represent the endpoints of the wire.

As an example, consider a curved wire carryving a current /7 in a uniform magnetic field B .
as shown in Figure 8.3 4.

Figure 8.3.4 A curved wire carrying a current /.



Using Eq. (8.3.3), the magnetic force on the wire 1s given by
_ b\ = -
FB:f(j ds)xB=I€xB (8.3.4)

where ¢ is the length vector directed from « to 5. However, if the wire forms a closed
loop of arbitrary shape (Figure 8.3.5), then the force on the loop becomes

Figure 8.3.5 A closed loop carrying a current 7 in a uniform magnetic field.



Since the set of differenfial length elements s form a closed polygon. and their vector

—_

sum 1s zero, 1.e. (fm’ s =0 . The net magnetic force on a closed loop 1s F; =0.

Example 8.1: Magnetic Force on a Semi-Circular Loop

Consider a closed semi-circular loop lying i the xy plane carrying a current / in the
counterclockwise direction, as shown in Figure 8.3.6.

O b e

Figure 8.3.6 Semi-circular loop carrying a current 7

A uniform magnetic field pointing in the +y direction i1s applied. Find the magnetic force
acting on the straight segment and the semicircular arc.



Solution:

LetB = Bi and fl and 17"2 the forces acting on the straight segment and the semicircular
parts, respectively. Using Eq. (8.3.3) and noting that the length of the straight segment 1s

2R, the magnetic force 1s

F,=I(2Ri)x(Bj)=2IRBk
where k is directed out of the page.

To evaluate F,, we first note that the ditferential length element s on the semucircle can

be written as d'§ = ds @ = Rd6(-sméb i+c0s0 j). The force acting on the length element

ds 15



dF, =1dSsxB =IRdO(—sin @i+ cos @ j)x(Bj)=—IBRsin8d0 k

Here we see that JF, points mto the page. Integrating over the entire semi-circular arc,
we have

—_—

F, = —IBR lf;j: sin 00 = —2IBRK

Thus, the net force acting on the semi-circular wire 1s

— —_—

Fuet:Fl_l_ 2:{]

This 15 consistent from our previous claim that the net magnetic force acting on a closed
current-carrying loop must be zero.



8.4 Torque on a Current Loop

What happens when we place a rectangular loop carrying a current / in the xy plane and

switch on a uniform magnetic field B = Bi which runs parallel to the plane of the loop.
as shown m Figure 8.4.1(a)?
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Figure 8.4.1 (a) A rectangular current loop placed in a uniform magnetic field. (b) The
magnetic forces acting on sides 2 and 4.




From Eq. 8.4.1, we see the magnetic forces acting on sides 1 and 3 vanish because the
length vectors £, =—bi and £, = bi are parallel and anti-parallel to B and their cross
products vanish. On the other hand, the magnetic forces acting on segments 2 and 4 are
non-vanishig:

-
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F,=I(-aj)x(Bi)=IaBKk
) (8.4.1)

F,=1(aj)x(Bi)=-IaBk

with fj pomtmg out of the page and E mto the page. Thus, the net force on the

rectangular loop 1s
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-F+F, +F.+F, =0 (8.4.2)

net 1



as expected. Even though the nef force on the loop vanshes, the forcesF, and F, will

produce a forque which causes the loop to rotate about the y-axis (Figure 8.4.2). The
torque with respect to the center of the loop 1
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where 4=abrepresents the area of the loop and the
rofatton 15 clockwise about the y-axis. It 15 conventer
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Notice that the magnitude of the torque is at a maximum when B is parallel to the plane
of the loop (or perpendicular to A ).

Consider now the more general situation where the loop (or the area vector A ) makes an
angle & with respect to the magnetic field.

Figure 8.4.2 Rotation of a rectangular current loop



From Figure 8.4.2, the lever arms and can be expressed as:

_ by
lgiﬂ( 511191+cu59k T, (8.4.5)
and the net torque becomes
. = .= o= b ﬁ
t=1,xF +1,xF, =2r, xF, =2 —( 5111(91+ca59k) ([an)
2 (8.4.6)

~ [abBsinfj=IAxB



For a loop consisting of N turns, the magnitude of the toque 1s

r=NI4Bsinb (8.4.7)

The quantity NJA is called the magnetic dipole moment fi:

i=NIA (8.4.8)




Figure 8.4.3 Right-hand rule for determining the direction of i

The direction of p 1s the same as the area vector A (perpendicular to the plane of the
loop) and 1s determined by the right-hand rule (Figure 8.4.3). The SI unit for the magnetic
dipole moment is ampere-meter” (A -m?). Using the expression for fi, the torque exerted
on a current-carrying loop can be rewritten as
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(8.4.9)




The above equation is analogous toF=pxE in Eq. (2.8.3), the torque exerted on an

—

electric dipole moment pin the presence of an electric field E . Recalling that the

potential energy for an electric dipole is U =—p-E [see Eq. (2.8.7)], a similar form is
expected for the magnetic case. The work done by an external agent to rotate the
magnetic dipole from an angle 6, to & 1s given by

V. :Igrdﬂ’ :IE uBsing')df’ = uB(cosf, —cosd)

5IIZI ﬁ-:' (

84.10)
=AU =U-T,



Once agam, W_ =-W, where W 1s the work done by the magnetic field. Choosing

U,=0at 6,=7/2, the dipole m the presence of an external field then has a potential
energy of

—_

U=-uBcosd=—p-B (8.4.11)

The configuration 1s at a stable equilibrium when p 1s aligned parallel to B, making U a
mimmum with U =-uB . On the other hand, when p and B are anti-parallel,

U_. =+uB1s a maximum and the system 1s unstable.



8.4.1 Magnetic force on a dipole

As we have shown above, the force experienced by a current-carrying rectangular loop
(1.e., a magnetic dipole) placed in a uniform magnetic field 1s zero. What happens if the
magnetic field 1s non-uniform? In this case, there will be a net force acting on the dipole.

Consider the situation where a small dipole p 1s placed along the symmetric axis of a bar
magnet, as shown i Figure 8.4 .4.
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Figure 8.4.4 A magnetic dipole near a bar magnet.



The dipole expertences an attractive force by the bar magnet whose magnetic field 1s non-
uniform 1 space. Thus, an external force must be applied to move the dipole to the right.

The amount of force £, exerted by an external agent to move the dipole by a distance

Ax1s given by

F A=W =AU =—uB(v+Av)+ 4B(x) = 1[B(x+Av)-B(x)]  (84.12)

EXI



where we have used Eq. (8.4.11). For small Ax, the external force may be obtamed as

P [B(x+Ax)-B(x)] :—Jud—B 8.4.13)
Ax dx

which 1s a positive quantity since dB/dv<0, 1e.. the magnetic field decreases with
mereasing x. This 15 precisely the force needed to overcome the attractive force due to the
bar magnet. Thus, we have

B d .
Fy=u i-B 8.4.14
p=h—=—(hB) (8.4.14)




More generally, the magnetic force experienced by a dipole p placed 1 a non-uniform

magnetic field B can be written as

where

15 the gradient operator.

F,=V(i-B)
0 0~ 0Or
ox oy o

(8.4.15)

(8.4.16)



