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The following steps may be useful when applymg Gauss’s law:
(1) Identify the symmetry associated with the charge distribution.

(2) Deternmune the direction of the electric field. and a “Gaussian surface™ on which the
magnitude of the electric field 1s constant over portions of the surface.

(3) Divide the space mfo different regions associated with the charge distribution. For
each region, calculate ¢__. the charge enclosed by the Gaussian surface.

(4) Calculate the electric flux® . through the Gaussian surface for each region.

(5) Equate @, with ¢, /¢,. and deduce the magnitude of the electric field.




Example 4.1: Infinitelv Long Rod of Uniform Charge Densitv

An mfinitely long rod of negligible radius has a uniform charge density A . Calculate the
electric field at a distance » from the wire.

Solution: ] / r
We shall solve the problem by following the steps outlined above. . +"/"'
(1) An mnfintely long rod possesses cylindrical symmetry. . //' | \\\' S

/ a

(2) The charge density 15 uniformly distributed throughout the length, and the electric

field E must be point radially away from the symmetry axis of the rod (Figure 4.2.6).
The magmtude of the electric field 15 constant on cylndrical surfaces of radms 7 .

Therefore. we choose a coaxial cylinder as our Gaussian surface.

(3) The amount of charge enclosed by the Gaussian surface. a cylinder of radms » and
length ¢ (Figure 4.2.7). 15 ¢ = AL




(4) As ndicated in Figure 4.2.7. the Gaussian surface consists of three parts: a two ends

S, and S, plus the curved side wall S; . The flux through the Gaussian surface 1s dA; E;
0c =B A= [[E, A+ [[E iR+ [[E, 48 h Yz .l i
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Figure 4.2.7 Gaussian surface for a umformly charged rod.

where we have set E; = E. As can be seen from the figure. no flux passes through the

ends since the area vectors nﬁl and dﬁl are perpendicular to the electric field which
points in the radial direction.

(5) Applying Gauss’s law gives E(277()=A(/&,. or

A
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(4.2.16)




Example 4.2: Infinite Plane of Charge

Consider an mfimitely large non-conducting plane in the xy-plane with uniform surface
charge density o . Determune the electric field everywhere in space.

Solution:

(1) An nfimitely large plane possesses a planar symmetry.

(2) Since the charge is uniformly distributed on the surface, the electric field E must

point perpendicularly away from the plane, E = E k. The ma gnitude of the electric field
15 constant on planes parallel to the non-conducting plane.

Figure 4.2.9 Electric field for uniform plane of charge




We choose our Gaussian surface to be a cylinder. which 1s often referred to as a “pillbox™
(Figure 4.2.10). The pillbox also consists of three parts: two end-caps S, and S, . and a

curved side S, . ;
l‘
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(3) Since the surface charge distribution on 1s uniform. the charge enclosed by the _j{{,_["‘-bd'\i‘
Gaussian “pillbox™ 1s g =c 4. where 4= 4 = 4, 1s the area of the end-caps. ﬂ\: ¢ 4 :}\
N i o N
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(4) The total flux through the Gaussian pillbox flux 1s g ,{"
dA|
K,
@, ={PE-dA= [[E, -dA, +([E, dA, +(|E, dA,
3 5 5 5
=E 4 +E4,+0 (42.17)
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Since the two ends are at the same distance from the plane. by symmetry. the magnitude
of the electric field must be the same: E, = E; = E. Hence. the total flux can be rewritten

as

®, =2FA (4.2.18)

E
(5) By applying Gauss’s law, we obtain

2Eq = Jee _ T4

which gives

=2 (4.2.19)




Example 4.3: Spherical Shell

A thin spherical shell of radius @ has a charge +O evenly distributed over its surface.
Find the electric field both inside and outside the shell.

Solutions: E
The charge distmbution 15 spherically symmetric, with a surface charge density
6=0/4 =0/47a" where 4, =47a"is the surface area of the sphere. The electric field

E must be radially symmetric and directed outward (Figure 4.2.12). We treat the regions
r<a and rz aseparately.




Casel: r=a

We choose owr Gaussian surface to be a sphere of radius » <. as shown i Figure

4.2.13(a).
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Figure 4.2.13 Gaussian surface for uniformly charged spherical shell for (a) » <a. and

(b) rza

The charge enclosed by the Gaussian surface 1s ¢__ =0 since all the charge 1s located on
the surface of the shell. Thus. from Gauss’s law, @ =¢q__/&,. we conclude

E=0.

(4.2.22)




Case2:r=za

In this case. the Gaussian surface 1s a sphere of radms» =¢ . as shown i Figure

4.2.13(b). Since the radius of the “Gaussian sphere™ 15 greater than the radius of the
spherical shell. all the charge 15 enclosed:

—
Since the flux through the Gaussian surface 1s

©, ={DE dA =E4=E(47r°)
5

by applving Gauss’s law, we obtain

rza (4.2.23)




As 1 the case of a non-conducting charged plane. we agam see a discontimuty mn E as we
cross the boundary at » =@ . The change. from outer to the mner swrface. 1s given by

AE=E —E = —0=—

- 2
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Example 4.4: Non-Conducting Solid Sphere

An electric charge +0 1s uniformly distributed throughout a non-conducting solid sphere
of radius @ . Determune the electric field everywhere imnside and outside the sphere.

Solution:

The charge distribution 1s spherically symumetric with the charge density given by

_o0__ 0
PV T Wa)nd 4229

where 7 is the volume of the sphere. In this case. the electric field E is radially
symmeifric and directed outward. The magnitude of the electric field 1s constant on
spherical surfaces of radius 7. The regions » = a and r = ¢ shall be studied separately.




Casel: r<a.

We choose our Gaussian surface to be a sphere of radius » <a. as shown i Figure
4.2.15(a).
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Figure 4.2.15 Gaussian surface for uniformly charged solid sphere. for (a) » < a. and (b)
F>a.




The flux through the Gaussian surface 1s

©, =qPE-dA =Ed=E(477)
5
With uniform charge distribution. the charge enclosed 1s

4 7
o :j‘ng: oV = p(gﬂ'r J:Q[—SJ (4.2.25)
I

which 1s proportional to the volume enclosed by the Gaussian surface. Applving Gauss’s
law®_ =gqg__/&,. we obtain

E{ﬁlfrrr}:ﬁ[i;rrg]
Togg\ 3
or
E=L__ < _  ,<a (4.2.26)
3g, 4Admgza




Case2: r=za.

In this case. owr Gaussian surface 1s a sphere of radms » =a . as shown i Figure
4.2.15(b). Since the radius of the Gaussian surface 1s greater than the radius of the sphere
all the charge 1s enclosed mm our Gaussian surface: ¢__ =0 . With the electric flux

through the Gaussian surface given by®, =E (4777) . upon applying Gauss’s law. we

obtain E(471*)=0Q/ &, . or

L__ O
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4.3 Conductors
An msulator such as glass or paper 15 a material i1 which electrons are attached to some
particular atoms and cannot move freely. On the other hand. inside a conductor. electrons

are free to move around. The basic properties of a conductor are the following:

(1) The electric field 1s zero mside a conductor.

(2) Any net charge must reside on the surface.

If there were a net charge inside the conductor, then by Gauss’s law (Eq. 4.3.2). E would
no longer be zero there. Therefore, all the net excess charge mmst flow to the surface of
the conductor.

Figure 4.3.1 Placing a conductor in a uniform electric field Eo.

Figure 4.3.2 Gaussian surface inside a conductor. The enclosed charge 1s zero.




(3) The tangential component of E is zero on the surface of a conductor.

We have already seen that for an 1solated conductor. the electric field 1s zero mn 1ts
mterior. Any excess charge placed on the conductor must then distribute itself on the

surface. as implied by Gauss’s law.

Constder the line mtegral fj)]_ii s around a closed path shown in Figure 4.3.3:

Since the electric field E is conservative, the line integral around the closed path abeda

vanishes:

§ i B8 = EL(81) = E, (&) +0(AI )+ E,(49) =0

conductor

Figure 4.3.3 Normal and tangential components of electric field outside the conductor

E =0 (on the surface of a conductor)




(4) E is normal to the surface just outside the conductor.

If the tangential component of E is mitially non-zero, charges will then move around
unfil 1t vanishes. Hence. only the normal component survives.

E
To compute the field strength just outside the conductor, consider the Gaussian pillbox ] L
drawn m Figure 4.3.3. Using Gauss’s law, we obtam +U+
- - c4 -
@, =(DE-dA=E,4+(0)- 4=— (43.2) -y
g 1[{"'EI ' bt p
o1 Figure 4.3.3 Gaussian “pillbox” for computing the electic field outside the conductor
=2 4323)
&)




The above result holds for a conductor of arbitrary shape. The pattern of the electric field
line directions for the region near a conductor 1s shown 1n Figure 4.3 4.
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Figure 4.3.4 Just outside the conductor. E is always perpendicular to the surface.

As 1 the examples of an mfimitely large non-conducting plane and a spherical shell. the
normal component of the electric field exhibits a discontinuity at the boundary:

_ a
AE,=EP —EF =—-0=—
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Fxamnle 4.5 Condnctor with Charoe Inside a Cavitv

Consider a hollow conductor shown in Figure 4.3.5 below. Suppose the net charge
carried by the conductor 1s +Q. In addition. there is a charge ¢ inside the cavity. What 1s
the charge on the outer surface of the conductor?

‘Gaussian surface

Figure 4.3.5 Conductor with a cavity

Since the electric field mnside a conductor must be zero. the net charge enclosed by the
Gaussian surface shown m Figure 4.3.5 must be zero. This implies that a charge —¢ must
have been induced on the cavity surface. Since the conductor itself has a charge +0. the
amount of charge on the outer surface of the conductor must be 0 +¢.




Example 4.6: Electric Potential Due to a Spherical Shell

Comnsider a metallic spherical shell of radius a and charge O. as shown in Figure 4.3.6.

i Aol T

Figure 4.3.6 A spherical shell of radius « and charge O.

(a) Find the electric potential everywhere.

(b) Calculate the potential energy of the system.




Solution:

(a) In Example 4.3, we showed that the electric field for a spherical shell of 1s given by

_ sz, P
E =4 4m&,r
(0N F<d

The electric potential may be calculated by using Eq. (3.1.9):
B—
Ve—V,=—| E-ds

For r = a. we have

—,Zd;-’: ! gzk Q (4.3.4)
Arxe,r dre, © r

V-V =—|"

where we have chosen F(=2) =0 as our reference point. On the other hand. for » < «a, the
potential becomes

V() — V(or:.}_—_[ drE[r::-a) j-/,(_}:—(/

——["ar—<2 — Q@ _r <
= ()

ey’ ©

(4.3.5)




(b) The potential energy U can be thought of as the work that needs to be done to buld
up the system. To charge up the sphere, an external agent must bring charge from infinity
and deposit 1t onto the surface of the sphere.

Suppose the charge accumulated on the sphere at some instant 1s ¢. The potential at the
surface of the sphere 1s then V' =g /4x¢g,a . The amount of work that must be done by an

external agent to bring charge dg from mfinity and deposit it on the sphere 1s




= = l? ..
dw... =vd [ d }f (4.3.6)
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Therefore. the total amount of work needed to charge the sphere to O 1s

2
Wese = IQ dq 1 g (4.3.7)
0 drea  87e,a

Smce V' =0/4rxe,a and W_, = U . the above expression 1s simplified to

Uz%QV (43.8)

The result can be contrasted with the case of a point charge. The work required to bring a
point charge O from mfinity to a point where the electric potential due to other charges 1s
Vwould be W__ = OV . Theretore, for a point charge Q. the potential energy 1s U=0V.




Now. suppose two metal spheres with radii 7; and 7, are connected by a thin conducting
wire. as shown in Figure 4.3.8.

Figure 4.3.8 Two conducting spheres connected by a wire.

Charge will continue to flow until equilibrium is established such that both spheres are at
the same potential V] =V, = V. Suppose the charges on the spheres at equilibrium are g,

and ¢, . Neglecting the effect of the wire that connects the two spheres. the equipotential

condition implies
1 ¢ __ 1 a5
Arey, 13 Adre, 14y

=

or

4D (4.3.9)
noon

assuming that the two spheres are very far apart so that the charge distributions on the
surfaces of the conductors are uniform. The electric fields can be expressed as




1 q o 1 q, o,
£ = A 2 £y = Are 2
TE, T & TE, T, &

(4.3.10)

where o, and &, are the surface charge densities on spheres 1 and 2. respectively. The
two equations can be combined to yvield

H_a_n (4.3.11)
E, o, 5

With the surface charge density being inversely proportional to the radius. we conclude
that the regions with the smallest radii of curvature have the greatest o . Thus, the

electric field strength on the surface of a conductor 1s greatest at the sharpest pomt. The
design of a lightning rod 1s based on this principle.
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4.8.2 Electric Flux Through a Square Surface

(a) Compute the electric flux through a square swface of edges 2/ due to a charge +QO

located at a perpendicular distance / from the center of the square. as shown in Figure
484

Figure 4.8.4 Electric flux through a square surface




Solutions:

(a) The electric field due to the charge +O 1s

=1 0. 1 Q(x1+m+:k]

2 2
drey 1 dre, 1 A

1/2

where 7 =(x"+ v* +z7)"? in Cartesian coordinates. On the surface S. v =/ and the area

element is dA =dAj=(dxd-)j.Since i-j=j-k=0and j-j=1.we have

E.gA=—2 | MEIHER G in)j— Q”gm:
dre,r r dre,r




Thus. the electric flux through 5 1s

N ] ¢l z
o, =fpE-dA-—L [ ax] —E - [ i
2 4re, I(x* +f +z%) 4e, -[—f (x1+fz)(x2 +32+:2)1f1

_QF.[I [ dx _Qtﬂ—l. X
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2}:‘5

where the following integrals have been used:

dx B x
J(xz Y’ @)
dx 1 -1 b’ —a’ 2 2
= t . b
J(xz ) al—a) an \jaz(xz 5 =da




(b) Using the result obtained in (a). if the charge +Q 1s now at the center of a cube of side

21 (Figure 4.8.5). what 1s the total flux emerging from all the six faces of the closed
surface?

2
S

2

X

Figure 4.8.5 Electric flux through the swface of a cube




(b) From symmetry arguments, the flux through each face must be the same. Thus. the
total flux through the cube 1s just six times that through one face:

0 |_0
6g, | &,

@Ezﬁ[

The result shows that the electric flux @, passing through a closed surface 1s

proportional to the charge enclosed. In addition. the result further reinforces the notion
that @ 1s independent of the shape of the closed surface.




4.8.4 Electric Potential of a Uniformly Charged Sphere

An msulated solid sphere of radius @ has a uniform charge density po. Compute the
electric potential everywhere.

Using Gauss’s law, we showed in Example 4.4 that the electric field due to the charge

Solution: distribution 1s
. r>a
(4.8.3)
. F<dad
1 Figure 4.8.6
The electric potential at F (indicated in Figure 4.8.6) outside the sphere is
ney-vey=—[ L ar=—1_L- 2 (4.8.4)

= Axe " Aze, ¥ 7




On the other hand. the electric potential at 2 mside the sphere 1s given by

Pg(r)—V(m}:—_f:drE(r;a)—I:E(r{a):—I:dr Q Edr' or '

4;:3[]?1_ dre,a
' 2
_ 1 Q_L%l(pl_nl}: 1 2 3_}”—2 (4.8.5)
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