
Boolean Algebra and Digital Logic

Introduction
In 1854 George Boole introduced a systematic treatment of logic and developed for this purpose an
algebraic system known as symbolic logic, or Boolean algebra.

In mathematics and mathematical logic, Boolean algebra is the branch of algebra in which the values of

the variables are the truth values true and false, usually denoted 1 and 0, respectively. Instead of

elementary algebra, where the values of the variables are numbers and the prime operations are addition

and multiplication, the main operations of Boolean algebra are the conjunction (and), the disjunction (or),

and the negation (not). It is thus a formalism for describing logical operations, in the same way that
elementary algebra describes numerical operations.

Boolean algebra is a branch of mathematics and it can be used to describe the manipulation and

processing of binary information. The two-valued Boolean algebra has important application in the

design of modern computing systems.

1- Boolean Algebra
Boolean algebra is algebra for the manipulation of objects that can take on only two values, typically true
and false. It is common to interpret the digital value 0 as false and the digital value 1 as true.

2- Boolean Expressions

 Boolean Expression: Combining the variables and operation yields Boolean expressions.

 Boolean Function: A Boolean function typically has one or more input values and yields a result,

based on these input value, in the range {0, 1}.

 A Boolean operator can be completely described using a table that list inputs, all possible values

for these inputs, and the resulting values of the operation.

 A truth table shows the relationship, in tabular form, between the input values and the result of a

specific Boolean operator or function on the input variables.

 The AND operator is also known as a Boolean product. The Boolean expression xy is

equivalent to the expression x * y and is read “x and y.” The behavior of this operator is

characterized by the truth table shown in Table 3.1

TABLE 1- The Truth Table for AND

 The OR operator is often referred to as a Boolean sum. The expression x+y is read “x or y”. The

truth table for OR is shown in Table 3.2

TABLE 2- The Truth Table OR

 Both and x’ are read as “NOT x.” The truth table for NOT is shown in Table 3.3 x

TABLE 3- The Truth Table for NOT

 The rule of precedence for Boolean operators give NOT top priority, followed by AND, and then

OR

TABLE 4- The Truth Table for F(x, y, z) = x + y’z

3- Boolean Identities

 Boolean expression can be simplified, but we need new identities, or laws, that apply to Boolean

algebra instead of regular algebra.

TABLE 5- Basic Identities of Boolean Algebra

 DeMorgan’s law provides an easy way of finding the complement of a Boolean function.

TABLE 6- Truth Tables for the AND Form of DeMorgan’s Law

4- Simplification of Boolean Expressions

 The algebraic identities we studied in algebra class allow us to reduce algebraic expression to

their simplest form.

 How did we know to insert additional terms to simplify the function? Unfortunately, there no

defined set of rules for using these identities to minimize a Boolean expression: it is simply

something that comes with experience. Before you can use boolean algebra to simplify a

complex expression you first need to know the laws. Indeed you need to be so familiar with

these laws that you can easily spot where and how they can be usefully applied. Then you will

need plenty of practice at simplifying complex expressions to really master the skills involved.

 To prove the equality of two Boolean expressions, you can also create the truth tables for each

and compare. If the truth tables are identical, the expressions are equal.

Example using Identities

5- Complements

 F(x, y, z) = x’ + yz’ and its complement, F’(x, y, z) = x(y’ + z)

TABLE 7- Truth Table Representation for a Function and Its Complement

6- Logic Gates

 We see that Boolean functions are implemented in digital computer circuits called gates.

 A gate is an electronic device that produces a result based on two or more input values.

o In reality, gates consist of one to six transistors, but digital designers think of them

as a single unit.

o Integrated circuits contain collections of gates suited to a particular purpose.

7.1- Symbols for Logic Gates
 The three Simple Gates are the AND, OR, and NOT gates.

FIGURE 9- The Three Basic Gates

 We have also the Universal Gates NAND gate and NOR gate.

 A NAND gate (short for NOT-AND) is the same as AND followed by NOT. You can see how

we’ve squished the symbols together.

-The equation for a NAND gate is C = AB

-The truth table for NAND is the opposite of AND. You list the same inputs but invert the output

on every row.

 A NOR Gate (NOT-OR) is the same as OR followed by NOT. We merge the OR and NOT

symbols together to get NOR.

-The equation for a NOR gate is C = A+B

-The truth table for NOR is the opposite of OR. You list the same inputs but invert the output on

every row.

FIGURE 11- The NAND and NOR Gates

 Other very useful gates are the Special Gates: exclusive OR (XOR) gate and exclusive NOR

(XNOR) gate.

- The output of the XOR operation is true only when the values of the inputs differ.

- The equation for a XOR gate is C = AB’ + A’B = A ⊕ B

- The output of the XNOR operation is true only when the values of the inputs same.

- The equation for a XNOR gate is C = AB + A’B’ = A ⊙ B

FIGURE 10- The exclusive OR (XOR) and exclusive NOR (XNOR) Gates

 NAND and NOR are known as universal gates because they are inexpensive to manufacture and

any Boolean function can be constructed using only NAND or only NOR gates.

FIGURE 12- Circuits Constructed using Only NAND Gates

FIGURE 13- Circuits Constructed using Only NOR Gates

 The Buffer Gate is a basic logic gate that passes its input, unchanged, to its output. Its behavior is

the opposite of a NOT gate. The main purpose of a buffer is to regenerate the input, usually using

a strong high and a strong low. A buffer has one input and one output; its output always equals its

input. Buffers are also used to increase the propagation delay of circuits by driving the large

capacitive loads.

FIGURE 14- Buffer Gate

7.2- Multiple Input Gates
 Gates can have multiple inputs and more than one output.

