Boolean Algebra and Digital Logic

Introduction

In 1854 George Boole introduced a systematic treatment of logic and developed for this purpose an
algebraic system known as symbolic logic, or Boolean algebra.

In mathematics and mathematical logic, Boolean algebra is the branch of algebra in which the values of
the variables are the truth values true and false, usually denoted 1 and O, respectively. Instead of
elementary algebra, where the values of the variables are numbers and the prime operations are addition
and multiplication, the main operations of Boolean algebra are the conjunction (and), the disjunction (or),
and the negation (not). It is thus a formalism for describing logical operations, in the same way that
elementary algebra describes numerical operations.

Boolean algebra is a branch of mathematics and it can be used to describe the manipulation and
processing of binary information. The two-valued Boolean algebra has important application in the
design of modern computing systems.

1- Boolean Algebra

Boolean algebra is algebra for the manipulation of objects that can take on only two values, typically true
and false. It is common to interpret the digital value 0 as false and the digital value 1 as true.

2- Boolean Expressions

e Boolean Expression: Combining the variables and operation yields Boolean expressions.

e Boolean Function: A Boolean function typically has one or more input values and yields a result,
based on these input value, in the range {0, 1}.

e A Boolean operator can be completely described using a table that list inputs, all possible values
for these inputs, and the resulting values of the operation.

e A truth table shows the relationship, in tabular form, between the input values and the result of a
specific Boolean operator or function on the input variables.

e The AND operator is also known as a Boolean product. The Boolean expression xy is
equivalent to the expression x * y and is read “x and y.” The behavior of this operator is
characterized by the truth table shown in Table 3.1

Inputs | Outputs
X ¥ XY

0 0 0

o 1 0

1 0 0

1 1 1

TABLE 1- The Truth Table for AND

e The OR operator is often referred to as a Boolean sum. The expression x+y is read “x or y”. The
truth table for OR is shown in Table 3.2



Inputs | Outputs
X ¥ X+Y

0 0 0

o 1 1

1 0 1

1 1 1

TABLE 2- The Truth Table OR

e Both X and x’ are read as “NOT x.” The truth table for NOT is shown in Table 3.3 x

Inputs | Outputs

X X
0 1
1 0

TABLE 3- The Truth Table for NOT

e The rule of precedence for Boolean operators give NOT top priority, followed by AND, and then

OR
Inputs Outputs
Xy z| Yy yz |x+yz=F
0O 001 O 0
O 0 11 1 1
0O 1 0|0 O 0
O 1 1|0 O 0
i 0 0|1 O 1
1 0 1 i 1
11 0] 0 O 1
1 1 1 |00 1

TABLE 4- The Truth Table for F(x, y, z) = x + y’z

3- Boolean Identities

o Boolean expression can be simplified, but we need new identities, or laws, that apply to Boolean
algebra instead of regular algebra.



Identity Name AND Form OR Form
Identity Law Ix=x O+x=x
Null (or Annulment) Law Ox=0 1+x=1
Idempotent Law XX =X X+X =X
Inverse Law xx=0 X+X =1
Commutative Law Xy = yx X+y=y+X
Associative Law (xy)z=x(yz) (x+y)+Z2=x +(y+2)
Distributive Law X+yZ=(x+y) (x+2) |x(y+2) =Xy + X2
Absorption Law X(X+y)=Xx X+XY =X
DeMorgan's Law (XY)=X+y (X+Y) =Xy
Double Complement Law X=x

TABLE 5- Basic Identities of Boolean Algebra

e DeMorgan’s law provides an easy way of finding the complement of a Boolean function.

(xy) =x+vy and (x+y)=Xxy

X y || | X y | X+
0 0 0 1 1 1 1
0 1 0 1 1 0 1
1 0 0 1 0 1 1
1 1 1 0 | o 0 | o

TABLE 6- Truth Tables for the AND Form of DeMorgan’s Law

4- Simplification of Boolean Expressions

e The algebraic identities we studied in algebra class allow us to reduce algebraic expression to
their simplest form.

o How did we know to insert additional terms to simplify the function? Unfortunately, there no
defined set of rules for using these identities to minimize a Boolean expression: it is simply
something that comes with experience. Before you can use boolean algebra to simplify a
complex expression you first need to know the laws. Indeed you need to be so familiar with
these laws that you can easily spot where and how they can be usefully applied. Then you will
need plenty of practice at simplifying complex expressions to really master the skills involved.

e To prove the equality of two Boolean expressions, you can also create the truth tables for each
and compare. If the truth tables are identical, the expressions are equal.



Proof Identity Name
(x+y)(x+y) = xxX+xy+yX+yy| Distributive Law
= O+xy+yX+yy | Inverse Law
= Q+Xy+yX+y ldempotent Law
= Xy+yX+y Identity Law
= Y(X+X)+y Distributive Law (and Commutative Law)
= y(1)+y Inverse Law
= y+y ldentity Law
=y ldempotent Law

Example using Identities

5- Complements

e F(x,y,z)=x"+yz and its complement, F’(X, y, z) = x(y’ + z)

X y z yz xX+yz | y+z | x(y+2)
0 0 0 0 1 1 0
0 0 1 0 1 1 0
0 1 0 1 1 0 0
0 1 1 0 1 1 0
1 0 0 0 0 1 1
1 0 1 0 0 1 1
1 1 0 1 1 0 0
1 1 1 0 0 1 1

TABLE 7- Truth Table Representation for a Function and Its Complement

6- Logic Gates

e \We see that Boolean functions are implemented in digital computer circuits called gates.
e A gate is an electronic device that produces a result based on two or more input values.
o In reality, gates consist of one to six transistors, but digital designers think of them

as a single unit.

o Integrated circuits contain collections of gates suited to a particular purpose.




7.1- Symbols for Logic Gates
e The three Simple Gates are the AND, OR, and NOT gates.

X AND Y X ORY NOT X
X Y XY + =
X ¥ X+Y X X
0 0 0 0 0 0
o1 o o1 1 i
1 0 0 10 1 s
1 1 1 1 1 1
Boolean Multiplication Boolean Addition
corresponds to the corresponds to the
logical function of an logical function of an
AND Gate OR Gate

FIGURE 9- The Three Basic Gates

o We have also the Universal Gates NAND gate and NOR gate.

e A NAND gate (short for NOT-AND) is the same as AND followed by NOT. You can see how
we’ve squished the symbols together.
-The equation for a NAND gate is C = AB
-The truth table for NAND is the opposite of AND. You list the same inputs but invert the output
On every row.

e A NOR Gate (NOT-OR) is the same as OR followed by NOT. We merge the OR and NOT
symbols together to get NOR.

-The equation for a NOR gate is C = A+B
-The truth table for NOR is the opposite of OR. You list the same inputs but invert the output on

MAND OR MNOR
X NAND Y X NOR Y
X Y XY X Y  X+Y
0 0 1 0 1
o 1 1 0 1 0
1 0 1 1 0 0
1 1 0 1 1 0

FIGURE 11- The NAND and NOR Gates



e Other very useful gates are the Special Gates: exclusive OR (XOR) gate and exclusive NOR
(XNOR) gate.
- The output of the XOR operation is true only when the values of the inputs differ.
- The equation fora XOR gateisC=AB’+ A’AB=A @ B
- The output of the XNOR operation is true only when the values of the inputs same.
- The equation fora XNOR gateisC=AB+ A’'B°’=A (O B

D= D=

X XOR X X XNOR X
X Y X0Y X ¥ X0Y
0 0 ¥ 0 0 1
0 1 1 0 1 o
1 0 1 1 0 0
1 1 0 1 1 1

FIGURE 10- The exclusive OR (XOR) and exclusive NOR (XNOR) Gates

¢ NAND and NOR are known as universal gates because they are inexpensive to manufacture and
any Boolean function can be constructed using only NAND or only NOR gates.

Logic Gates using only NAND Gates

NAND Gate Symbol NOT Gate
A A D)_’é (Inverter)
Q [
B o—
AND Gate Buffer
A ©— AB AB "\O_E }LE )D_OA
B O—
Exclusive-OR

A = OR Gate A . Q

Ao Exclusive-NOR

B O

: s vemawe || [ )=
:EDL > D’IDJ
0 DY

FIGURE 12- Circuits Constructed using Only NAND Gates
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Logic Gates using only NOR Gates
NOR Gate Symbol NOT Gate
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FIGURE 13- Circuits Constructed using Only NOR Gates

e The Buffer Gate is a basic logic gate that passes its input, unchanged, to its output. Its behavior is
the opposite of a NOT gate. The main purpose of a buffer is to regenerate the input, usually using
a strong high and a strong low. A buffer has one input and one output; its output always equals its
input. Buffers are also used to increase the propagation delay of circuits by driving the large

capacitive loads.
x—>—x

EUFFER
X X
0 0
1 1

FIGURE 14- Buffer Gate

7.2- Multiple Input Gates
o Gates can have multiple inputs and more than one output.
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