Arithmetic Operations on Binary numbers:

Binary arithmetic is used in digital systems mainly because the numbers (decimal and floatingpoint numbers) are stored in binary format in most computer systems. All arithmetic operations such as addition, subtraction, multiplication, and division are done in binary representation of numbers. It is necessary to understand the binary number representation to figure out binary arithmetic in digital computers.

1- Binary Addition Operation

The simplest arithmetic operation in binary is addition. It is a key for binary subtraction, multiplication, division.

- In addition: $\mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}$
- There are five rules of binary addition.

$0+0$	$=0$	
$0+1$	$=1$	
$1+0$	$=1$	
$1+1$	$=0$	with carry
$1+1+1$	$=1$	with carry

Ex1: add the following two binary numbers: $(1001)_{2}+(1011)_{2}$

```
Carry: 1 11
    1001 9
    1011 11
    10100
        20
```

HW: add the following two binary numbers: $(11010)_{2}+(10100)_{2}$

2- Binary Subtraction Operation [Complement and Subtraction using 1's and 2's Complement]

A- Complement

Complements are used in digital computers for simplifying the subtraction operation and for logical manipulation. There are two types of complements for each base (r) system:
I. The r's complements (Radix Complement)
II. The ($\mathrm{r}-1$)'s complements (Diminished Radix Complement)

Base	r's complements	(r-1)'s complements
10	10's complements	9's complements
2	2's complements	1's complements
8	8's complements	7's complements
16	16's complements	F's complements

1. The r's complements (Radix Complement)

A positive number N in base r with an integer part of n digits, the r 's complement of N is defining as follows:

$\mathbf{r}^{\mathrm{n}}-\mathbf{N}$	for	$\mathbf{N} \neq \mathbf{0}$
$\mathbf{0}$	for	$\mathbf{N}=\mathbf{0}$

Ex1: Find the r's complement of (7) $\mathbf{1 0}_{10}$
Answer: $\mathrm{N}=7, \mathrm{n}=1, \mathrm{r}=10$
rn-N = 101-7 = 3

Ex2: Find the r's complement of (5690) $\mathbf{1 0}_{10}$

Answer: $\mathrm{N}=5690$, $\mathrm{n}=4, \mathrm{r}=10$
$\mathrm{rn}-\mathrm{N}=104-5690=10000-5690=4310$

Ex3: Find the 2's complement of (1101) $\mathbf{2}_{2}$
Answer: $\mathrm{N}=1101$, $\mathrm{n}=4, \mathrm{r}=2$
rn-N $=24-1101=(16) 10-(1101) 2$

$$
=16-13=3=(0011) 2
$$

2. The (r-1)'s complements (Radix Complement)

A positive number N in base r with an integer part of n digits, the ($r-1$)'s complement of N is defining as follows:

$$
(\mathrm{r}-1) \text { 's complement }=\mathrm{r}^{\mathrm{n}}-\mathrm{N}-1
$$

One's complement (1's):- can be found by changing all 1's to 0's and all 0's to 1's it used only with binary number.

Ex1: Find the 1's complement of (10101) $)_{2}$
Answer: Given Number: (10101)2
1's complement: (01010) ${ }_{2}$

Ex2: Find the 1's complement of (1101) $\mathbf{2}_{2}$

Answer: Given Number: (1101) ${ }_{2}$
1's complement: (0010) $\mathbf{2}_{2}$

Now we have:

$$
\begin{aligned}
& \mathrm{r} \text { 's complement } \quad=\mathrm{r}^{\mathrm{n}}-\mathrm{N} \\
& \left(\mathrm{r}-1 \text {)'s complement }=\mathrm{r}^{\mathrm{n}}-\mathrm{N}-1\right. \\
& (\mathrm{r}-1) \text { 's complement }=\mathrm{r} \text { 's complement }-1 \\
& (\mathrm{r}-1) \text { 's complement }+\mathbf{1}=\mathrm{r} \text { 's complement }
\end{aligned}
$$

This means, the 2 's complement of binary number can be easily obtained by adding 1 to the Least Significant Bit (LSB) of 1's complement of the number.

Ex3: Find the 1's and 2's complement of (1001) ${ }_{2}$

Answer: Given Number: $(1001)_{2}$
1's complement $=(0110)_{2}$
2 's complement $=1$'s complement +1
$=$
0110
$+\quad 1$

B- Subtraction Operation

- In subtraction: $\mathrm{A}+\mathrm{B} \neq \mathrm{B}+\mathrm{A}$
- $\mathrm{A}-\mathrm{B}=\mathrm{A}+(-\mathrm{B})$
- Flow the following steps to perform the subtraction operation (A - B):

1- Take the 1 's complement of the subtracted number (second number: B) to get $\overline{\mathrm{B}}$. $(1 \rightarrow 0,0 \rightarrow 1)$
2- Take the 2 's complement of \bar{B} and add it to the minuend number which remained unchanged.
3- Check the result:
1- If an end carry occurs discard it and the result is positive number.
2- If an end carry does not occurs take the 2 's complement to the result and put (-) sign (the result is negative number).
Ex1: Subtract the binary number $(1011011)_{2}$ from $(1101100)_{2}$

1101100	108
$-\quad 1011011$	91

1's complement of $(1011011)_{2}$ is: 0100100
2's complement of (0100100) is: 0100101

Ex2: Subtract the binary number $(1101100)_{2}$ from $(1011011)_{2}$.

1011011	91
$-\quad 1101100$	108

1's complement of $(1101100)_{2}$ is: 0010011
2's complement of (0010011) is: 0010100

1 1011011 0010100
+1101111 End carry does not occurs take the 2's complement to the result and put $(-)$ sign

HW: Subtract the binary number $(10100101)_{2}$ from $(10101010)_{2}$.
HW: Subtract the binary number $(10101010)_{2}$ from $(10100101)_{2}$.

3- Binary Multiplication Operation

- There are four rules of binary multiplication.

$0 * 0$	$=0$
$0 * 1$	$=0$
$1 * 0$	$=0$
$1 * 1$	$=1$

Ex1: Multiply the following two binary numbers: $(1011)_{2} *(111)_{2}$

	1011	11
	111	7
carry	11111	
	1011	
	1011	
	1011	77

Ex2: Multiply (1001.11) $)_{2}$ by $(111.01)_{2}$

	$\begin{array}{r} 1001.11 \\ 111.01 \end{array}$	9.75
	1	
Carry	1111011	
	100111	
	000000	
	100111	
	100111	
+	100111	
	10001101011	70.6875

$(1000110.1011)_{2}$

4- Binary Division Operation

Ex1: Divide $(1001110)_{2}$ by $(100)_{2}$

The final result: (10011.1) ${ }_{2}$

Ex2: Perform the following binary division:
1- $(11101)_{2} /(10)_{2}$
2- $(11010)_{2} /(10)_{2}$
3- $(10100)_{2} /(111)_{2}$

Solve: $(11101)_{2} /(10)_{2}$

10	1110.1	$29 / 2=14.5$
	11101	
	10	
	011	
	10	
	010	
	10	
	001	
	00	
	10	Add 0 and put (.) on the result
	10	
	00	

The final result: $(1110.1)_{2}$

