
RECORDS:

A record is a user defined data type suitable for grouping data elements

together. All elements of an array must contain the same data type.

A record overcomes this by allowing us to combine different data types

together. Suppose we want to create a data record which holds a student

name and mark. The student name is a packed array of characters, and the

mark is an integer.

We could use two seperate anays for this, but a record is easier. The

method to do this is,

. define or declare what the new data group (record) looks like

. create a working variable to be of that type.

Defining a Record

To define a record type, you may use the type declaration statement. The

record type is defined as:

type

record-name : record

field-1: field-type1;

field-2: field-type2;

field-n: field-typen;

end:

Here is the way you would declare the Book record:

type

Books : record

title: packed array [1..50] of char;

author: packed anay [1..50] of char;

subject: packed anay U..1001 of char;

in the usual way as:

Alternatively, you can directly define a

var

Books : record

title: packed arraY tl"501 of char;

author: packed an:ay t1"501 of char;

subject: packed array [1"100] ofchar;

bookjd: integer;

end;

The following portion of code shows how to define a record, then create a

working variable to be of the same type'

TYPE

studentname : packed array[l"20] of char;

studentinfo: RECORD

name : studentname;

mark: integer

END;

VAR studentl : studentinfo;

Thefirstportiondefinesthecompositionoftherecordidentifiedas

studentinfo. It consists of two parts (called fields)'

record tYPe variable as:

The first part of the record is a packed character array identified as name'

The second part of studentinfo consists of an integer, identified as mark'

The declaration of a record begins with the keyword record, and ends

with the keYword end;

The next line declares a working variable called studentl to be of the

same type (ie composition) as studentinfo'

Each of the individual fields of a record are accessed by using the format'

recordname.fieldname :: value or variable;

An example follows,

student l.nctme : --'JOE BLOGGS' ; {20 characters}

studentl.mark :: 57;

Letscreateanewdztarecordsuitableforstoringthedate

type date : RECORD

day : integer;

month : integer;

yeqr : integer

END;

This declares a NEW data type calle d date'This date record consists of

three basic data elements, all

integers. Now declare working variables to use in the program' These

variables will have the same

composition as the date record'

var todaYs-date : date;

defines a variable called todays-datetobeof the same data type as that of

the newlY defined record date'

ASSIGNING VALUES TO RECORD ELEMENTS

These statements assign values to the individual elements of the record

todaYs-date,

todaYs-date.daY :: 2I ;

totlaYs
-date.month

: : 07 ;

todaYs
-date.Year

: : I 985 ;

SELF TEST

What does this statement do?

r e ad,ln (to day s

-dat
e' day, t o day s

-dat
e' month' t o day s

-dat
e'y e ar) ;

Answer:

SELF TEST

What does this statement do?

r e adln (t o day s

-dat
e' d ay' t o day s

-dat
e' month' t o d ay s

-dat
e'y e ar) ;

Self Test..

Theprogramstatementreadsthreevaluesfromthekeyboard,

intoeachoftheindividualfi.eldsoftherecordtodays-date.

