10 Clabs JY

Ministry of Higher Education & Scientific Research Al-Muthanna University College of Science Department of Mathematics and Computer Applications

Subject: Mathematical Analysis

Stage: Third

Date: / /2018

Time: 3 hr

04.06.2018

((Assessment of The Final Exam for The Second Semester)) Academic year 2017-2018

45

Note: For each question 12 marks.

Q1// Explain with example the relation among continuous, differentiable and integrable functions.

Q2//1- Let $f:[a,b] \to \mathbb{R}$ be a continuous function on [a,b] and differentiable on (a,b), then prove there is a point $c \in (a, b)$ such that f(b) - f(a) = (b - a)f'(c).

2- Give example to explain above.

Q3// Let $f:[0,1] \to \mathbb{R}$ be a function such that $f(x) = x \quad \forall x \in [0,1]$, then:

1- If we take the partition $p = \{0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1\}$, is f is R-integrable on p?

2- Evaluate $\int_0^1 x \, dx^2$

Q4// 1- Let $f:[0,2] \to \mathbb{R}$ be function such that $f(x) = 3x, \forall x \in [0,2]$, evaluate $\int_0^2 3x \ dx$?

- 2- Prove if f and h are R-integrable on [a, b], then fh is also R-integrable on [a, b].
- 3- Prove every subset of a negligible set is negligible.

Q5// 1- Give example for the following:

- a- Integrable function is not monotonic. b- Integrable function is not continuous.
- c- Set has not measure, but has outer measure.

2- If we have the set $S = (0,1) \cup \{1,2,3\}$ then, what the measure and outer measure of S?

M.M. KRADO Head of Department Asst. Prof. Mousa Makey Krady

Good Luck

Lecture Dr. Amer Himza Almyaly

Ministry of Higher Education & Scientific Research Al-Muthanna University College of Science Department of mathematics & computer applications

Subject: Numerical analysis II Stage: Third Date: / /2018

Time: 3 hours

((Assessment of the final exam for the second semester)) Academic year 2017-2018

45

Q1\\ Use Adams predictor-corrector method third order to solve ?

$$y' = \frac{y^2}{1+t}$$
, $h = 0.25$, $1 \le t \le 2$, exact solution equation is $y(t) = \frac{-1}{\ln(1+t)}$.

Q2\\ Use Euler's modified method to solve

$$y' = \frac{1+t}{1+y}$$
, $1 \le t \le 2$, exact solution equation is $y(t) = \sqrt{t^2 + 2t + 6} - 1$.

Find the error values at each step.

Q3\\ Use composite Trapezoidal rule to solve

 $\int \cos^2(x) dx$, n = 4, find the error value that occurred.

Q4\\ Use Least sequare method to fit the following data of the form $y=be^{ax}$

5.5	1	1.25	1 5		
V	5.1		1.3	1.75	2
3	J.1	5.79	6.53	7.45	8.46

Q5\\ Approximate the solution of the following PDE ----(7 marks)

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, \quad 0 \le x \le 1, \quad 0 \le y \le 2$$

$$u(x,0) = x^2, \ u(x,2) = (x-2)^2, \ u(0,y) = y^2, \ u(1,y) = (y-1)^2, \ h = k = 0.5$$
Q6\\ Detremine the value of h that ensure the approximation $u(x,0) = (y-1)^2$ and $u(x,0) = ($

Q6\\ Detremine the value of h that ensure the appoximation error of less than 0.00002

when approximate $\int \sin(x) dx$ by composite Simpson's rule, determine the value of n.

----(7 marks)

Lecturer Assist. L. Dheyab, A. N.

Head of Department Assist. Proff. Krady, M. M.

2018-6:13

Minis of Higher Education & Scientific Research Al-Muthanna University College of Science **Department of Mathematics** and Computer Applications

Subject: Mathematical Statistics II Stage: Third

Date: / /2018 Time: Three Hours

((Assessment of the final exam for the second semester)) Academic year 2017-2018

Q1: Let $x_1, x_2, ..., x_n$ represent measurements of a random sample drawn from a population with exponential distribution with parameter θ . Find the most powerful critical region with test size α to test $H_0: \theta = \theta_0$ against $H_1: \theta = \theta_1 < \theta_0$, then find (10 Marks) the power of test.

Q2: Derive the confidence interval limits for the normal distribution when the variance of this distribution σ^2 is known, and draw the acceptance and rejection (10 Marks) regions.

Q3: (a) Derive the Neyman-Pearson theorem.

(b) What is the relationship between the type I error and the power of test. Explain mathematically this relationship.

(10 Marks) ->

Q4: Let $x_1, x_2, ..., x_n$ be a random sample drawn from a population with probability density function:

 $f(x,p) = \begin{cases} \theta x^{\theta-1}, & \text{if } 0 < x < 1 \\ 0, & \text{otherwise} \end{cases}$

where $\theta > 0$ is an unknown parameter, what is a $100(1 - \alpha)\%$ approximate CI for the parameter θ if the sample size is (10 Marks) large?.

Q5: Let $x_1, x_2, ..., x_{12}$ be a random sample drawn from a normal population with $\mu 0$ and variance is σ^2 . What the most powerful test with test size 0.025 for testing $H_0: \sigma^2 = 10$ versus $H_1: \sigma^2 = 5$ using Neyman-Pearson (10 Marks) theorem?

Q6: If we have a ransom sample drawn from a Poisson distribution with parameter λ . Using the factorization theorem, show that $\sum_{i=1}^{n}$ is sufficient indicator for the (10 Marks) parameter λ .

Best of luck

Dr. Safaa Karem Kadhem

Ministry of Higher Education & Scientific Research Al-Muthanna University College of Science Department of Mathematics and Computer Applications

Subject: Ring II Stage: Third

Date: / /2018 Time: 3 hr

((Assessment of The Final Exam for The Second Semester))

Academic year 2017-2018

))

73.05.2018

45

Note: For every question 10 marks

Q1// Give a reason for the following:

- $1 Z_8 / \{0,4\} \cong Z_4$?
- 2- let (F, +, .) be a field then F[x] is not field?
- 3- $(\mathbb{Z}, +, .)$ is Noetherian but is not Artenian?
- 4- Every prime ideal is irreducible.
- 5- The polynomial $f(x) = x^2 2$ is irreducible over \mathbb{Q} .

Q2//1- Prove every artinian integral domain ring is a field?

2- Define and give examples for reducible and irreducible polynomial, then prove if the polynomial $f(x) \in F[x]$ of degree 2 or 3 is reducible in F iff it has a root in F. Hint: F is field.

Q3// Prove the following are equivalent? Only Two.

- 1- (R,+,.) satisfy A.c.c on ideals.
- 2- Every a nonempty collection of ideals has a maximal element.
- 3- Every ideal of R is finitely generated.

Q4// 1- The polynomial $f(x) \in R[x]$ is divisible by x-a iff a is root of f(x).

2- If we have two submodules N_1 and N_2 of an R-module M, what the difference between $N_1 + N_2$ and $N_1 \cup N_2$?

Q5// 1- Prove every isomorphic image of a skew-field is a skew-field?

2- Let (R, +, .) be a Noetherian ring then prove every proper ideal in (R, +, .) is a finite intersection of irreducible ideals.

Q6// The polynomial $f(x) = x^4 - 1$, how many roots in polynomial rings Z[x], C[x] and $Z_6[x]$? Hint C is complex number set.

Good Luck

Head of Department
Asst. Prof. Mousa Makey Krady

Lecture

Dr. Amer Himza Almyaly

(x) 10 0. Late 14

Ministry of Higher Education & Scientific Research Al Muthanna University College of Science Dept. of Mathematics & Computer Applications

Subject: Partial Differential Equations II

Stage: 3rd class Date: / /2018 Time: 3 hours

90.06.2018

((Assessment of the final exam for the second semester))

Academic year 2017 -2018 .

45

Q1// Solve $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$, 0 < x < 50, t > 0, with u(0,t) = 6, u(50,t) = 12, $u(x,0) = 5x^2$, then find u(1,4).

Q2// Determined the type of the following PDEs and solve it. a) $(1+q)^2r - 2(1+p+q+pq)s + (1+p)^2t = 0$

b) $r - 2yp + y^2z = (y - 2)e^{2x+3y}$ ******(12 marks)

Q3// Find a solution of the following PDE

 $\nabla^2 u = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0 \quad ; \ |u(0,\theta)| < \infty \quad and \ u(a,\theta) = f(\theta)$

Q4//Explain how to solve the Dirichlet initial boundary value problem

$$u_{tt} = c^2 u_{xx} + F(t, x), u(0, x) = f(x),$$

 $u_t(0, x) = g(x), u(t, 0) = u(t, l) = 0$

for the wave equation subject to the external forcing on [0,l].

$$y^2r - 2xys + x^2t = \frac{y^2}{x}p + \frac{x^2}{y}q$$

Q6// Solve $u_{tt} + 3u_t + u = u_{xx}$, 0 < x < 1 , t > 0 , with

$$u(0,t) = 0$$
 , $u(1,t) = 0$; $u(x,0) = 0$, $u_t(x,0) = x\sin(2\pi x)$

note: $p = \frac{\partial z}{\partial x}$, $q = \frac{\partial z}{\partial y}$, $r = \frac{\partial^2 z}{\partial x^2}$, $s = \frac{\partial^2 z}{\partial x \partial y}$, $t = \frac{\partial^2 z}{\partial y^2}$

Good Luck

Asst. Prof Mousa M. Krudy