Subject: Foundation mathematics II
Stage: first
Date: / 12017
Time :
((Assessment of the final exam for the second semester)) ${ }^{0} 0.2017$ Academic year 2016-2017

Remark $\backslash$ Twelve mark for every question and six mark for every branch. Q1\A\Define and give example with it is solution for the following terms:
1-Semi-group 2-Great common divisor 3-Prime number
$\mathrm{B} \backslash$ Let $(P(x), *, \#)$ is a mathematical system which defined by:
(1) $A \# B=A \cap B$
(2) $A^{*} B=A \cup B$ for all $A, B \in P(x)$. Does ( $P(x), *, \#$ ) is number system?

Q2 $\backslash \mathrm{A} \backslash$ Prove that the mathematical system $(Z,+)$ is a belain group s.t $a+b=[m+p, n+q]$ For all $a, b \in Z$ and $a=[m, n]$ and $b=[p, q]$.
$\mathrm{B} \backslash$ Let $f(n)=a^{n}-1, n>1$. Then $f(n)$ is prime only if $a=2$ and $n$ is prime.
Q3 $\backslash \mathrm{A} \backslash$ Prove that the mathematical system $(Q, \leq)$ is totally ordered set.
$\mathrm{B} \backslash \mathrm{If}(x, a)=1$ and $(x, b)=1$ then $(x, a b)=1$.
Q4\A4Prove that the mathematical system $(Q,+,$.$) is a field of rational number.$ $\mathrm{B} \backslash$ Let $z$, $w$ are two complex number. Then $|z+w| \leq|z|+|w|$.

Q5 $\backslash \mathrm{A} \backslash$ Cube of any integer is of the form $9 K, 9 K \mp 1,9 K+8$.
$\mathrm{B} \backslash$ Two integers $a$ and $b$, both not zero are relatively prime iff $1=a x+b y$ for some $x, y \in Z$.

## Dast nf luck

