Ministry of Higher Education & Scientific Research Al-Muthanna University College of Science Department of Mathematics and Computer Applications

Subject: Complex analysis

Stage: 4th stage Date: / / 2017

Time: 3 hours 0 6. 06. 2017

((Assessment of the final exam for the second semester)) Academic year 2016 -2017

45

- Q1/State Cauchy theorem and its corollaries, and then find $\int_L \frac{dz}{z}$ where L is the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$.
- Q2/State Cauchy integral's formula, and then evaluate $\int_C \frac{e^{z^2}}{z^2-6z} dz$; c: |z-2| = 3.
- Q3/Use Cauchy's residue theorem to evaluate $\oint_C \frac{2z+6}{z^2+4} dz$; c: |z-i| = 2.
- Q4/State the behavior theorem of integral as $R \to \infty$, and then evaluate the Cauchy principle value of $\int_{-\infty}^{\infty} \frac{1}{(x^2+1)(x^2+9)} dx$.
- Q5/A/ Compute $\int_{C} \frac{dz}{z^{2}+1}$; where $c: |z-1+2i| = \frac{1}{4}$. B/Show that : $\int_{0}^{\infty} \frac{x^{\frac{1}{3}}}{(x+1)^{2}} dx = \frac{2\pi}{3\sqrt{3}}$, $\int_{0}^{2\pi} \frac{\cos 3\theta}{5-4\cos \theta} d\theta = \frac{\pi}{12}$.
- Q6/Define the Laurent series, then find the Laurent expansion of $f(z) = \frac{e^z}{z^{10}}$ at z = 0.
- Q7/ State and prove the fundamental theorem of algebra, and give an example.
- Q8/Define the zeros of f(z), and prove that the polynomial $z^4 + z + 1$ has one zero in each quadrant.
- Q9/Define a conformal mapping, and then prove that: An analytic function f is conformal at every point z_0 for which $f'(z_0) \neq 0$.
- Q10/Find the bilinear transformation that maps the points =-1, ∞ , i onto $w=\infty$, i, 1.

note: 6 marks for each question

Good Luck